纯度 | >90%SDS-PAGE. |
种属 | E.col |
靶点 | Pka-C1 |
Uniprot No | P12370 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 2-353aa |
氨基酸序列 | GNNATTSNKKVDAAETVKEFLEQAKEEFEDKWRRNPTNTAALDDFERIKTLGTGSFGRVMIVQHKPTKDYYAMKILDKQKVVKLKQVEHTLNEKRILQAIQFPFLVSLRYHFKDNSNLYMVLEYVPGGEMFSHLRKVGRFSEPHSRFYAAQIVLAFEYLHYLDLIYRDLKPENLLIDSQGYLKVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLVYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFGSDLKDLLRNLLQVDLTKRYGNLKAGVNDIKNQKWFASTDWIAIFQKKIEAPFIPRCKGPGDTSNFDDYEEEALRISSTEKCAKEFAEF |
预测分子量 | 56.7 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于Pka-C1重组蛋白的模拟参考文献示例(注:以下内容为假设性示例,实际文献需通过学术数据库检索):
1. **标题**: "Expression and Purification of Recombinant Pka-C1 in E. coli for Functional Studies"
**作者**: Smith J, et al.
**摘要**: 研究报道了通过大肠杆菌表达系统高效表达Pka-C1重组蛋白的优化方法,采用His标签亲和层析纯化,并通过体外激酶活性实验验证其生物功能。
2. **标题**: "Structural Insights into Pka-C1 Catalytic Mechanism via X-ray Crystallography"
**作者**: Johnson R, et al.
**摘要**: 利用重组Pka-C1蛋白的晶体结构解析,揭示了其ATP结合域和底物识别关键位点的构象变化,为设计特异性抑制剂提供结构基础。
3. **标题**: "Role of Recombinant Pka-C1 in cAMP-Dependent Signaling Pathways"
**作者**: Lee S, et al.
**摘要**: 通过体外实验证明重组Pka-C1在cAMP信号传导中的核心作用,并发现其在调节细胞增殖和凋亡中的新靶点。
4. **标题**: "Comparative Analysis of Yeast vs. Mammalian Systems for Pka-C1 Production"
**作者**: Garcia M, et al.
**摘要**: 对比了酵母和哺乳动物细胞表达系统生产Pka-C1重组蛋白的效率,发现哺乳动物系统更利于维持蛋白的翻译后修饰和长期稳定性。
建议通过PubMed、Web of Science或Google Scholar检索关键词“PKA C1 recombinant protein”或结合具体研究方向(如疾病模型、药物开发)获取真实文献。
Pka-C1. also known as the catalytic subunit of cAMP-dependent protein kinase A (PKA), is a key enzyme in eukaryotic signal transduction. PKA is a tetrameric holoenzyme comprising two regulatory (R) subunits and two catalytic (C) subunits. In its inactive state, the R subunits bind and inhibit the C subunits. Upon elevation of intracellular cAMP levels, cAMP binds to the R subunits, triggering a conformational change that releases the active C subunits. These free catalytic subunits, including Pka-C1. phosphorylate serine/threonine residues on target proteins, regulating diverse cellular processes such as metabolism, gene expression, and cell cycle progression.
Recombinant Pka-C1 is produced using expression systems like *E. coli* or mammalian cells, often fused with tags (e.g., His or GST) for purification. Its production enables detailed study of PKA’s structure-function relationships, enzymatic kinetics, and interactions with inhibitors or substrates. Pka-C1 is widely utilized in biochemical assays, drug discovery, and structural biology to investigate cAMP-PKA signaling anomalies linked to diseases, including cancer, cardiovascular disorders, and neurological conditions. Additionally, it serves as a critical tool for developing therapeutic agents targeting PKA dysregulation, offering insights into modulating this pathway for clinical applications.
×