纯度 | >85%SDS-PAGE. |
种属 | Human |
靶点 | STAC |
Uniprot No | Q99469 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-402aa |
氨基酸序列 | MGSSHHHHHHSSGLVPRGSHMGSMIPPSSPREDGVDGLPKEAVGAEQPPS PASTSSQESKLQKLKRSLSFKTKSLRSKSADNFFQRTNSEDMKLQAHMVA EISPSSSPLPAPGSLTSTPARAGLHPGGKAHAFQEYIFKKPTFCDVCNHM IVGTNAKHGLRCKACKMSIHHKCTDGLAPQRCMGKLPKGFRRYYSSPLLI HEQFGCIKEVMPIACGNKVDPVYETLRFGTSLAQRTKKGSSGSGSDSPHR TSTSDLVEVPEEANGPGGGYDLRKRSNSVFTYPENGTDDFRDPAKNINHQ GSLSKDPLQMNTYVALYKFVPQENEDLEMRPGDIITLLEDSNEDWWKGKI QDRIGFFPANFVQRLQQNEKIFRCVRTFIGCKEQGQITLKENQICVSSEE EQDGFIRVLSGKKKGLIPLDVLENI |
预测分子量 | 47 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于STAC重组蛋白研究的示例参考文献(内容为虚构示例,仅供格式参考):
1. **文献名称**: "Functional Characterization of Recombinant STAC1 Protein in Skeletal Muscle Signaling"
**作者**: Smith A, et al.
**摘要**: 本研究利用昆虫细胞系统表达重组STAC1蛋白,验证其通过SH3结构域与CaV1.1通道相互作用,调节骨骼肌兴奋-收缩耦合的功能,为肌肉疾病机制提供新见解。
2. **文献名称**: "Expression and Purification of STAC3 Recombinant Protein for Malignant Hyperthermia Studies"
**作者**: Chen L, et al.
**摘要**: 通过大肠杆菌表达系统优化STAC3重组蛋白的纯化流程,并证明其在体外模型中影响RyR1通道活性,可能与恶性高热症病理相关。
3. **文献名称**: "Structural Analysis of STAC2 Recombinant Protein Using Cryo-EM"
**作者**: Tanaka K, et al.
**摘要**: 首次解析重组STAC2蛋白的冷冻电镜结构,揭示其与T型钙通道(CaV3.1)的结合模式,为靶向药物设计提供结构基础。
4. **文献名称**: "Role of Recombinant STAC Proteins in Cardiac Arrhythmia Models"
**作者**: Müller R, et al.
**摘要**: 在心肌细胞中过表达重组STAC家族蛋白,发现STAC2通过调控钙离子稳态影响心律失常的发生,提示其潜在治疗靶点价值。
**注意**:以上文献名称及内容为示例,实际研究中请通过PubMed、Web of Science等平台检索真实文献。
**Background of STAC Proteins**
The STAC (SH3 and cysteine-rich domain-containing) family of proteins, comprising STAC1. STAC2. and STAC3. plays critical roles in cellular signaling and ion channel regulation. Discovered in the late 1990s, these adaptor proteins are characterized by their conserved structural domains: an N-terminal SH3 domain, which mediates protein-protein interactions, and one or two cysteine-rich regions implicated in membrane association or redox sensing.
STAC proteins are widely expressed, with notable roles in skeletal muscle, neurons, and immune cells. STAC3. the most studied member, is essential for excitation-contraction (EC) coupling in skeletal muscle. It interacts with the voltage-gated calcium channel Cav1.1 (CACNA1S) and the ryanodine receptor (RyR1), facilitating calcium release during muscle contraction. Mutations in *STAC3* are linked to congenital myopathy, highlighting its physiological importance.
STAC1 and STAC2 also modulate ion channels and signaling pathways. STAC1 regulates TRPV1 and TRPA1 channels in pain perception, while STAC2 influences Cav1.2 and Cav1.3 channels in neurons and cardiomyocytes. Emerging evidence suggests STAC proteins act as scaffolds, integrating signals from kinases like PKC and PKA to fine-tune cellular responses.
Dysregulation of STAC proteins is associated with diseases, including muscular disorders, neuropathies, and cancer. STAC3’s role in EC coupling has driven research into therapies for neuromuscular diseases, while STAC1/2 are explored as targets for pain management or cardiac arrhythmias.
Despite progress, many mechanisms remain unclear, particularly how cysteine-rich domains contribute to signaling or stress responses. Ongoing studies aim to unravel STAC-specific interactomes and their therapeutic potential, leveraging structural biology and disease models. Understanding STAC proteins offers insights into calcium signaling and adaptive cellular processes, with implications for treating channelopathies and beyond.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×