纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | dxr |
Uniprot No | P45568 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-398aa |
氨基酸序列 | MKQLTILGSTGSIGCSTLDVVRHNPEHFRVVALVAGKNVTRMVEQCLEFSPRYAVMDDEASAKLLKTMLQQQGSRTEVLSGQQAACDMAALEDVDQVMAAIVGAAGLLPTLAAIRAGKTILLANKESLVTCGRLFMDAVKQSKAQLLPVDSEHNAIFQSLPQPIQHNLGYADLEQNGVVSILLTGSGGPFRETPLRDLATMTPDQACRHPNWSMGRKISVDSATMMNKGLEYIEARWLFNASASQMEVLIHPQSVIHSMVRYQDGSVLAQLGEPDMRTPIAHTMAWPNRVNSGVKPLDFCKLSALTFAAPDYDRYPCLKLAMEAFEQGQAATTALNAANEITVAAFLAQQIRFTDIAALNLSVLEKMDMREPQCVDDVLSVDANAREVARKEVMRLAS |
预测分子量 | 48.4 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于DXR(1-脱氧-D-木酮糖-5-磷酸还原异构酶)重组蛋白研究的示例文献,供参考:
---
1. **文献名称**: *Heterologous expression and characterization of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Arabidopsis thaliana*
**作者**: Smith J, et al.
**摘要**: 本研究在大肠杆菌中成功表达了拟南芥来源的DXR重组蛋白,并优化了纯化条件。通过酶动力学分析,揭示了该酶在植物萜类代谢中的催化效率及其对底物1-脱氧-D-木酮糖-5-磷酸(DXP)的依赖性。
2. **文献名称**: *Crystal structure of DXR from Mycobacterium tuberculosis and insights into antibiotic target development*
**作者**: Li X, et al.
**摘要**: 解析了结核分枝杆菌DXR的晶体结构,发现其活性位点关键氨基酸残基对辅酶NADPH的结合至关重要。研究为基于结构的抗结核药物设计提供了理论依据。
3. **文献名称**: *Metabolic engineering of Escherichia coli for enhanced isoprenoid production via DXR pathway optimization*
**作者**: Chen Y, et al.
**摘要**: 通过在大肠杆菌中过表达重组DXR蛋白并结合代谢通路改造,显著提高了类异戊二烯化合物的产量,验证了DXR在合成生物学中的应用潜力。
---
**注意**:以上文献为示例,实际研究中请通过PubMed、Web of Science或Google Scholar等平台检索真实文献(关键词:DXR, reductoisomerase, recombinant protein, metabolic engineering)。
**Background of DXR Recombinant Protein**
DXR (1-deoxy-D-xylulose 5-phosphate reductoisomerase) is a critical enzyme in the methylerythritol phosphate (MEP) pathway, a metabolic route responsible for synthesizing isoprenoid precursors in bacteria, apicomplexan parasites (e.g., *Plasmodium* spp.), and plants. Isoprenoids are essential for cellular processes such as membrane stability, hormone production, and electron transport. Unlike humans, which rely on the mevalonate pathway for isoprenoid biosynthesis, organisms dependent on the MEP pathway make DXR an attractive target for antimicrobial and antimalarial drug development.
Recombinant DXR proteins are engineered through genetic cloning and expression in heterologous systems like *E. coli* or yeast. This enables large-scale production for structural and functional studies. Researchers focus on elucidating DXR’s catalytic mechanism, substrate binding, and inhibition strategies. Fosmidomycin, a natural antibiotic, is a known DXR inhibitor and has been studied as a potential antimalarial agent, though resistance and pharmacokinetic limitations highlight the need for novel derivatives.
In structural biology, DXR’s crystal structure has been resolved, revealing a NADPH-binding domain and a catalytic site that accommodates its substrate, 1-deoxy-D-xylulose 5-phosphate (DXP). These insights guide rational drug design. Additionally, recombinant DXR is used in enzyme activity assays to screen inhibitors and optimize therapeutic candidates.
Beyond drug discovery, DXR recombinant proteins have applications in metabolic engineering. For example, enhancing isoprenoid production in microbes or plants could improve yields of bioactive compounds (e.g., artemisinin) or biofuels. However, challenges like enzyme stability and regulatory hurdles remain.
Overall, DXR recombinant protein research bridges biochemistry, medicine, and biotechnology, offering solutions to global health issues like antibiotic resistance and malaria while advancing sustainable bioproduction platforms.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×