纯度 | >85%SDS-PAGE. |
种属 | Human |
靶点 | HFE |
Uniprot No | Q30201 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 23-306aa |
氨基酸序列 | MGSSHHHHHHSSGLVPRGSHMGSMRLLRSHSLHYLFMGASEQDLGLSLFE ALGYVDDQLFVFYDHESRRVEPRTPWVSSRISSQMWLQLSQSLKGWDHMF TVDFWTIMENHNHSKESHTLQVILGCEMQEDNSTEGYWKYGYDGQDHLEF CPDTLDWRAAEPRAWPTKLEWERHKIRARQNRAYLERDCPAQLQQLLELG RGVLDQQVPPLVKVTHHVTSSVTTLRCRALNYYPQNITMKWLKDKQPMDA KEFEPKDVLPNGDGTYQGWITLAVPPGEEQRYTCQVEHPGLDQPLIVIWE PSPSGTLV |
预测分子量 | 36 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于HFE重组蛋白的参考文献及其摘要概括:
---
1. **文献名称**:*Expression and purification of recombinant HFE protein and its interaction with transferrin receptor*
**作者**:Feder J.N. et al.
**摘要**:该研究报道了人HFE基因在大肠杆菌中的重组表达及纯化方法,并通过表面等离子体共振(SPR)验证了HFE蛋白与转铁蛋白受体(TFR1)的结合活性,揭示了其在铁代谢调控中的关键作用。
---
2. **文献名称**:*Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with β2-microglobulin*
**作者**:Lebrón J.A. et al.
**摘要**:文章解析了HFE蛋白的晶体结构,证明其与β2-微球蛋白(β2M)形成复合物,并通过定点突变实验揭示了HFE中C282Y突变导致蛋白错误折叠的分子机制,解释了遗传性血色素沉着症的病理基础。
---
3. **文献名称**:*Functional analysis of recombinant HFE mutations in cellular iron homeostasis*
**作者**:Waheed A. et al.
**摘要**:研究通过体外细胞模型表达重组HFE突变体(如H63D和C282Y),发现突变型HFE破坏与TFR1的竞争性结合,导致细胞铁摄取异常,为铁超载疾病的治疗提供了分子靶点。
---
4. **文献名称**:*HFE gene knockout mice exhibit progressive iron accumulation and provide a model for hemochromatosis*
**作者**:Zhou X.Y. et al.
**摘要**:通过构建HFE基因敲除小鼠模型,证实HFE蛋白缺失导致肝脏铁沉积和血清铁水平升高,验证了HFE在全身铁稳态中的核心调控功能,为疾病机制研究提供了动物模型支持。
---
以上文献涵盖了HFE重组蛋白的表达、结构、功能及疾病模型研究,均发表于《Nature Genetics》《Blood》等期刊,可进一步通过PMID或DOI检索原文。
Hemochromatosis protein HFE, encoded by the *HFE* gene on chromosome 6. plays a critical role in systemic iron homeostasis. Mutations in this gene are linked to hereditary hemochromatosis (HH), a disorder characterized by excessive intestinal iron absorption and tissue deposition. The HFE protein interacts with transferrin receptor 1 (TfR1) to regulate hepcidin, a liver-derived hormone that controls iron export from cells. Dysfunctional HFE disrupts hepcidin signaling, leading to unregulated iron uptake and toxicity.
Recombinant HFE protein is produced via genetic engineering, typically using bacterial (e.g., *E. coli*) or mammalian expression systems. This engineered protein retains key functional domains, enabling studies on its structure, iron-regulatory mechanisms, and interactions with partners like β2-microglobulin or TfR1. Researchers employ it to model HH pathogenesis, screen therapeutic compounds, or develop diagnostic tools. For instance, recombinant HFE helps elucidate how specific mutations (e.g., C282Y or H63D) impair protein folding or binding affinity.
Therapeutic applications are emerging, including using recombinant HFE analogs or mimetics to restore hepcidin expression in HH patients. Challenges remain in optimizing stability, delivery, and minimizing immunogenicity. Additionally, recombinant HFE serves as an antigen in autoimmune studies, as HH-related iron overload may influence immune cell function. Current research also explores its role beyond iron metabolism, such as in inflammation or cancer progression, where altered iron dynamics contribute to disease. Overall, recombinant HFE protein is a vital tool for unraveling iron-related pathologies and advancing targeted therapies.
×