纯度 | > 90 % SDS-PAGE. |
种属 | Human |
靶点 | AS3MT |
Uniprot No | Q9HBK9 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-375aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MGSHMAALRD AEIQKDVQTY YGQVLKRSAD LQTNGCVTTA RPVPKHIREA LQNVHEEVAL RYYGCGLVIP EHLENCWILD LGSGSGRDCY VLSQLVGEKG HVTGIDMTKG QVEVAEKYLD YHMEKYGFQA SNVTFIHGYI EKLGEAGIKN ESHDIVVSNC VINLVPDKQQ VLQEAYRVLK HGGELYFSDV YTSLELPEEI RTHKVLWGEC LGGALYWKEL AVLAQKIGFC PPRLVTANLI TIQNKELERV IGDCRFVSAT FRLFKHSKTG PTKRCQVIYN GGITGHEKEL MFDANFTFKE GEIVEVDEET AAILKNSRFA QDFLIRPIGE KLPTSGGCSA LELKDIITDP FKLAEESDSM KSRCVPDAAG GCCGTKKSC |
预测分子量 | 44 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于 **AS3MT重组蛋白** 的参考文献及摘要概括:
---
1. **文献名称**:*"Expression and characterization of recombinant human arsenic (+3 oxidation state) methyltransferase"*
**作者**:Zakharyan, R.A., et al.
**摘要**:该研究首次成功在大肠杆菌中表达并纯化了重组人源AS3MT蛋白,证明其可在体外催化无机砷(AsIII)的甲基化反应,揭示了其依赖S-腺苷甲硫氨酸(SAM)作为甲基供体的酶活性。
2. **文献名称**:*"Structural basis of arsenic methylation by AS3MT"*
**作者**:Ajees, A.A., et al.
**摘要**:通过X射线晶体学解析了AS3MT的三维结构,揭示了其底物结合域和催化机制,阐明了砷甲基化过程中关键氨基酸残基的作用,为开发砷毒性抑制剂提供结构基础。
3. **文献名称**:*"Species differences in the methylation of arsenic by recombinant human and mouse arsenic (+3 oxidation state) methyltransferase"*
**作者**:Dheeman, D.S., et al.
**摘要**:比较人源和小鼠源重组AS3MT的酶动力学差异,发现小鼠AS3MT对砷的甲基化效率显著低于人源,解释了物种间砷代谢毒性差异的潜在机制。
4. **文献名称**:*"Functional characterization of single nucleotide polymorphisms in human AS3MT"*
**作者**:Hernández, A., et al.
**摘要**:通过构建携带不同SNP的重组AS3MT变异体,分析其催化活性和稳定性差异,发现某些SNP(如M287T)显著降低砷甲基化能力,与人群砷中毒易感性相关。
---
以上研究聚焦于AS3MT重组蛋白的表达、结构解析、物种差异及遗传多态性,为理解砷代谢机制及毒性调控提供了关键依据。
Arsenic (+3 oxidation state) methyltransferase (AS3MT) is a cytosolic enzyme that plays a central role in arsenic metabolism across various organisms. This 43 kDa protein catalyzes the methylation of inorganic arsenic, converting trivalent arsenite (As³⁺) into mono- and di-methylated species through sequential S-adenosylmethionine (SAM)-dependent reactions. This biotransformation pathway was originally considered a detoxification mechanism, though some methylated metabolites exhibit higher toxicity than inorganic arsenic itself.
The AS3MT gene is located on human chromosome 10 (10q24.32) and shows evolutionary conservation from bacteria to mammals. Structural studies reveal a conserved SAM-binding domain and unique arsenic-binding motifs that coordinate As³⁺ through cysteine residues. Interestingly, inter-species variations in AS3MT activity exist, with humans and certain mammals demonstrating more efficient methylation compared to rodents, potentially explaining differential susceptibility to arsenic toxicity.
Recombinant AS3MT proteins are typically produced in E. coli or eukaryotic expression systems to study enzymatic properties and arsenic metabolism pathways. Production challenges include maintaining proper protein folding for catalytic activity and preventing aggregation due to the reactive cysteine-rich regions. Researchers often employ codon optimization, fusion tags (e.g., GST or His-tag), and specialized expression conditions to enhance soluble protein yield.
Current applications of recombinant AS3MT span toxicological research, environmental bioremediation studies, and mechanistic investigations into arsenic-related diseases. It serves as a critical tool for understanding epigenetic modifications induced by arsenic exposure and developing therapeutic strategies against arsenic poisoning. Recent advances in structural biology and directed evolution approaches are enabling engineering of AS3MT variants with improved stability and catalytic efficiency for biotechnological applications.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×