纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | DHFR |
Uniprot No | P00374 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 2-187aa |
氨基酸序列 | VGSLNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWFSIPEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGIKYKFEVYEKND |
预测分子量 | 37.3kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于DHFR(二氢叶酸还原酶)重组蛋白研究的代表性文献摘要信息,供参考:
1. **文献名称**:*High-yield expression and purification of recombinant human dihydrofolate reductase*
**作者**:Smith J, et al.
**摘要**:报道了利用大肠杆菌表达系统高效表达人源DHFR重组蛋白的优化方法,通过密码子优化和诱导条件调控,使蛋白表达量提高3倍,并采用亲和层析纯化获得高纯度酶,验证了其催化活性。
2. **文献名称**:*Crystal structure of a bifunctional dihydrofolate reductase-thymidylate synthase from Plasmodium falciparum*
**作者**:Brown NC, et al.
**摘要**:通过X射线晶体学解析了恶性疟原虫DHFR与胸苷酸合成酶的融合蛋白三维结构(分辨率2.8Å),揭示了其双功能催化机制及抗疟药物结合位点,为抗寄生虫药物设计提供结构基础。
3. **文献名称**:*Engineering a thermostable dihydrofolate reductase for applications in nanotechnology*
**作者**:Garcia A, et al.
**摘要**:通过定向进化技术改造大肠杆菌DHFR,获得耐高温(75℃仍保持活性)突变体,并证明其可在纳米粒子组装中作为稳定连接元件,拓展了酶在生物材料领域的应用。
4. **文献名称**:*Comparative analysis of DHFR expression in eukaryotic vs prokaryotic systems*
**作者**:Johnson RL, et al.
**摘要**:系统比较了DHFR在酵母(毕赤酵母)和大肠杆菌中的表达差异,发现真核系统能实现正确折叠但产量较低,原核系统产量高但需重折叠,提出选择表达系统应根据下游应用需求。
注:以上为虚拟文献案例,实际研究需检索PubMed或Web of Science获取真实文献(如搜索关键词:recombinant DHFR protein expression)。经典文献可参考《Journal of Biological Chemistry》《Protein Expression and Purification》等期刊。
**Background of Recombinant Dihydrofolate Reductase (DHFR)**
Dihydrofolate reductase (DHFR) is a critical enzyme in cellular metabolism, catalyzing the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF), a vital cofactor in nucleotide biosynthesis. This reaction is essential for DNA synthesis, amino acid metabolism, and cell proliferation. Due to its central role in cell growth, DHFR is a well-studied target for antibiotics, antifungals, and chemotherapeutic agents like methotrexate (MTX), which inhibit its activity to suppress rapidly dividing cells.
Recombinant DHFR refers to the protein produced through genetic engineering in heterologous expression systems, such as *E. coli*, yeast, or mammalian cells. The cloning and expression of the *dhfr* gene enable large-scale production of the enzyme for research and industrial applications. Recombinant DHFR retains the functional properties of the native enzyme, making it invaluable for biochemical studies, drug discovery, and structural biology. For example, X-ray crystallography studies using recombinant DHFR have elucidated its active site architecture and mechanism of action, guiding the design of targeted inhibitors.
In biotechnology, DHFR is also employed as a selection marker in mammalian cell culture systems. Cells lacking endogenous DHFR (e.g., CHO-DHFR⁻) require exogenous thymidine and glycine for survival. By introducing a recombinant *dhfr* gene alongside a gene of interest, researchers can select for high-producing cell lines using methotrexate, which forces gene amplification and enhances protein yield. This system is widely used in biopharmaceutical production, including monoclonal antibodies and therapeutic proteins.
Overall, recombinant DHFR bridges fundamental science and practical applications, serving as a model enzyme for understanding enzyme kinetics, a tool for bioproduction, and a cornerstone in anticancer and antimicrobial drug development. Its versatility continues to drive innovations across multiple disciplines.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×