纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | TRAK2 |
Uniprot No | O60296 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-914aa |
氨基酸序列 | MSQSQNAIFTSPTGEENLMNSNHRDSESITDVCSNEDLPEVELVSLLEEQLPQYRLKVDTLFLYENQDWTQSPHQRQHASDALSPVLAEETFRYMILGTDRVEQMTKTYNDIDMVTHLLAERDRDLELAARIGQALLKRNHVLSEQNESLEEQLGQAFDQVNQLQHELCKKDELLRIVSIASEESETDSSCSTPLRFNESFSLSQGLLQLEMLQEKLKELEEENMALRSKACHIKTETVTYEEKEQQLVSDCVKELRETNAQMSRMTEELSGKSDELIRYQEELSSLLSQIVDLQHKLKEHVIEKEELKLHLQASKDAQRQLTMELHELQDRNMECLGMLHESQEEIKELRSRSGPTAHLYFSQSYGAFTGESLAAEIEGTMRKKLSLDEESSLFKQKAQQKRVFDTVRIANDTRGRSISFPALLPIPGSNRSSVIMTAKPFESGLQQTEDKSLLNQGSSSEEVAGSSQKMGQPGPSGDSDLATALHRLSLRRQNYLSEKQFFAEEWQRKIQVLADQKEGVSGCVTPTESLASLCTTQSEITDLSSASCLRGFMPEKLQIVKPLEGSQTLYHWQQLAQPNLGTILDPRPGVITKGFTQLPGDAIYHISDLEEDEEEGITFQVQQPLEVEEKLSTSKPVTGIFLPPITSAGGPVTVATANPGKCLSCTNSTFTFTTCRILHPSDITQVTPSSGFPSLSCGSSGSSSSNTAVNSPALSYRLSIGESITNRRDSTTTFSSTMSLAKLLQERGISAKVYHSPISENPLQPLPKSLAIPSTPPNSPSHSPCPSPLPFEPRVHLSENFLASRPAETFLQEMYGLRPSRNPPDVGQLKMNLVDRLKRLGIARVVKNPGAQENGRCQEAEIGPQKPDSAVYLNSGSSLLGGLRRNQSLPVIMGSFAAPVCTSSPKMGVLKED |
预测分子量 | 101,4 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于TRAK2重组蛋白的3篇参考文献及其简要摘要:
1. **"Structural and functional analysis of the TRAK2 kinesin-binding domain"**
- **作者**: Smith A, et al.
- **摘要**: 通过X射线晶体学解析了TRAK2的驱动蛋白结合结构域的三维结构,揭示了其与驱动蛋白KIF5的相互作用机制,并发现重组TRAK2蛋白在体外能够促进线粒体沿微管的定向运输。
2. **"TRAK2 regulates mitochondrial transport and neuronal viability"**
- **作者**: Johnson R, et al.
- **摘要**: 研究利用重组TRAK2蛋白进行功能恢复实验,证明其在神经元中通过调控线粒体动态分布维持能量代谢平衡,TRAK2缺失会导致轴突运输障碍并加剧神经退行性病变。
3. **"TRAK2 interacts with dynein-dynactin complexes to modulate retrograde mitochondrial motility"**
- **作者**: Lee S, et al.
- **摘要**: 通过重组TRAK2蛋白的体外结合实验,发现其C端区域与动力蛋白复合体Dynein-Dynactin结合,调控线粒体逆向运输的速率,为神经细胞中线粒体双向运输的协调机制提供了新证据。
(注:以上文献为示例,实际引用需根据具体研究内容检索PubMed或Google Scholar获取真实文献。)
TRAK2 (Trafficking kinesin protein 2), also known as GRIF-1 or OIP106. is a member of the TRAK/GRIF-1 family of scaffold proteins that play critical roles in intracellular transport and organelle dynamics. It is ubiquitously expressed but particularly enriched in neurons, where it regulates mitochondrial trafficking by linking these organelles to microtubule-based motor proteins like kinesin and dynein. Structurally, TRAK2 contains coiled-coil domains and a C-terminal region that facilitates interactions with mitochondrial Rho GTPases (Miro1/2) and adaptor proteins, enabling precise control of mitochondrial movement and positioning in response to cellular energy demands or stress signals.
Functionally, TRAK2 is implicated in maintaining mitochondrial health, synaptic activity, and calcium homeostasis. It works in concert with the PINK1/Parkin pathway during mitophagy, the selective degradation of damaged mitochondria. Dysregulation of TRAK2 has been associated with neurological disorders, including Parkinson's disease, Alzheimer's disease, and neurodevelopmental conditions. Recent studies also suggest its involvement in cancer progression and immune responses, potentially through interactions with signaling pathways like NF-κB.
Recombinant TRAK2 protein, typically produced in bacterial or mammalian expression systems, retains the native protein's ability to bind microtubules, motor proteins, and mitochondrial membranes. Researchers utilize this purified protein for *in vitro* studies to dissect its molecular interactions, screen therapeutic compounds, or investigate mutations linked to disease. Its role in mitochondrial dynamics makes it a valuable tool for exploring cellular energy metabolism, neuronal survival mechanisms, and targeted drug development. However, functional differences between TRAK2 and its homolog TRAK1 remain an active area of investigation, particularly regarding tissue-specific roles and compensatory mechanisms.
×