纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | ssbF |
Uniprot No | P18310 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 2-179aa |
氨基酸序列 | AVRGINKVILVGRLGKDPEVRYIPNGGAVANLQVATSESWRDKQTGEMREQTEWHRVVLFGKLAEVAGECLRKGAQVYIEGQLRTRSWEDNGITRYVTEILVKTTGTMQMLVRAAGAQTQPEEGQQFSGQPQPEPQAEAGTKKGGAKTKGRGRKAAQPEPQPQPPEGDDYGFSDDIPF |
预测分子量 | 35.5 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是模拟生成的关于ssbF重组蛋白的参考文献示例(注:文献为虚构,仅供格式参考):
---
1. **文献名称**:*Cloning and Expression of Recombinant ssbF Protein from Salmonella typhimurium*
**作者**:Zhang, L.; Wang, H.; Chen, J.
**摘要**:本研究成功克隆了沙门氏菌中的ssbF基因,并利用大肠杆菌表达系统实现了重组蛋白的高效表达与纯化。通过SDS-PAGE和Western blot验证了蛋白的分子量及特异性,为后续功能研究奠定了基础。
2. **文献名称**:*Functional Characterization of ssbF in DNA Repair Pathways*
**作者**:Smith, R.; Patel, K.; García, A.
**摘要**:通过体外实验证明,重组ssbF蛋白能显著增强DNA聚合酶的持续合成能力,并在紫外线诱导的DNA损伤修复中与RecA蛋白协同作用,揭示了其在细菌应激反应中的关键角色。
3. **文献名称**:*Crystal Structure Analysis of ssbF Reveals Novel DNA-Binding Motifs*
**作者**:Tanaka, Y.; Müller, P.; Ivanova, N.
**摘要**:首次解析了ssbF重组蛋白的晶体结构,发现其C端存在独特的α-螺旋结构域,可能参与调控蛋白-蛋白相互作用,为开发基于SSB的基因编辑工具提供了结构基础。
4. **文献名称**:*Application of Recombinant ssbF in Enhancing PCR Efficiency*
**作者**:Li, X.; Kim, S.; Nguyen, T.
**摘要**:将纯化的ssbF重组蛋白添加至PCR体系,证实其可稳定单链DNA模板,显著提高高GC含量片段的扩增效率,拓展了SSB蛋白在分子诊断中的应用潜力。
---
**说明**:以上文献为模拟生成内容,实际研究中请通过PubMed、Google Scholar等平台检索真实发表的论文。
**Background of ssbF Recombinant Protein**
Single-strand DNA-binding proteins (SSBs) are essential molecular chaperones that play critical roles in DNA metabolism, including replication, repair, and recombination. These proteins stabilize transient single-stranded DNA (ssDNA) intermediates by binding cooperatively and preventing degradation or secondary structure formation. The ssbF gene, encoding a bacterial SSB homolog, is particularly notable in certain Gram-positive bacteria, such as *Staphylococcus aureus*, where it contributes to genome maintenance and stress response.
Recombinant ssbF protein is engineered through genetic cloning, where the ssbF gene is inserted into expression vectors (e.g., *E. coli*) for large-scale production. This allows purification of the protein with high yield and consistency, often facilitated by affinity tags like polyhistidine (His-tag). Structurally, ssbF retains the conserved oligonucleotide/oligosaccharide-binding (OB) fold domain characteristic of SSBs, enabling sequence-independent ssDNA binding with high affinity.
Studies on ssbF have highlighted its functional versatility. Beyond stabilizing ssDNA during replication, it interacts with key enzymes (e.g., helicases, recombinases) to enhance their activity. In pathogens like *S. aureus*, ssbF is implicated in virulence and antibiotic resistance mechanisms, making it a potential target for therapeutic interventions. Additionally, recombinant ssbF serves as a tool in biotechnological applications, such as improving DNA amplification efficiency in PCR or supporting single-molecule sequencing techniques.
The development of recombinant ssbF underscores its importance in both basic research and applied sciences, bridging insights into bacterial DNA dynamics and enabling advancements in molecular biology workflows.
×