纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | hph |
Uniprot No | P00557 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-341aa |
氨基酸序列 | MKKPELTATSVEKFLIEKFDSVSDLMQLSEGEESRAFSFDVGGRGYVLRVNSCADGFYKDRYVYRHFASAALPIPEVLDIGEFSESLTYCISRRAQGVTLQDLPETELPAVLQPVAEAMDAIAAADLSQTSGFGPFGPQGIGQYTTWRDFICAIADPHVYHWQTVMDDTVSASVAQALDELMLWAEDCPEVRHLVHADFGSNNVLTDNGRITAVIDWSEAMFGDSQYEVANIFFWRPWLACMEQQTRYFERRHPELAGSPRLRAYMLRIGLDQLYQSLVDGNFDDAAWAQGRCDAIVRSGAGTVGRTQIARRSAAVWTDGCVEVLADSGNRRPSTRPRAKE |
预测分子量 | 54.0 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于HPH重组蛋白的模拟参考文献示例(实际文献请通过学术数据库查询):
---
1. **文献名称**:*Expression and purification of hygromycin phosphotransferase (HPH) recombinant protein in E. coli for antibiotic selection studies*
**作者**:Zhang, L. et al.
**摘要**:研究报道了在大肠杆菌中高效表达HPH重组蛋白的优化方法,通过密码子优化和诱导条件调整,显著提高了蛋白可溶性。该蛋白在体外验证了其磷酸转移酶活性,为抗性筛选系统提供了基础数据。
---
2. **文献名称**:*Development of a mammalian cell line stably expressing HPH-fusion proteins for long-term gene editing applications*
**作者**:Kim, S. & Patel, R.
**摘要**:作者构建了基于HPH与CRISPR-Cas9融合的重组蛋白系统,利用HPH的潮霉素抗性筛选稳定表达细胞株。实验证明该系统在人类HEK293细胞中实现了持续基因编辑能力,且蛋白稳定性提升。
---
3. **文献名称**:*Comparative analysis of HPH and neomycin resistance markers in recombinant protein production using Pichia pastoris*
**作者**:García-Ruiz, A. et al.
**摘要**:研究比较了HPH与新霉素抗性系统在毕赤酵母中的重组蛋白表达效率。结果显示,HPH标记的转化效率更高,且对目标蛋白(如抗体片段)的产量无显著负面影响,推荐用于高密度发酵体系。
---
**备注**:以上为模拟示例,实际文献请通过PubMed、Web of Science等平台检索关键词(如“hygromycin phosphotransferase recombinant”、“HPH selection marker”)。如需具体文献协助,可提供更详细的研究方向。
**Background of HPH Recombinant Protein**
The hygromycin B phosphotransferase (HPH) gene, originally isolated from *Escherichia coli*, encodes an enzyme that confers resistance to the antibiotic hygromycin B. Discovered in the 1980s, HPH became a critical tool in molecular biology and genetic engineering due to its ability to inactivate hygromycin B through phosphorylation, neutralizing its inhibitory effects on protein synthesis. This property made HPH a popular selectable marker for eukaryotic and prokaryotic systems, enabling efficient selection of successfully transfected or transformed cells in research and biotechnological applications.
HPH is widely utilized in constructing recombinant plasmids for gene expression studies, gene knockout models, and transgenic organism development. In mammalian cell cultures, plant transformation, and fungal systems, the HPH gene is co-introduced with target genes, allowing researchers to selectively grow cells that have successfully integrated the foreign DNA using hygromycin B-containing media. Compared to other antibiotic resistance markers, HPH offers advantages in systems where alternatives like neomycin resistance (neo) are less effective, particularly in plants and certain mammalian cells.
Recombinant HPH protein production typically involves expressing the gene in microbial hosts (e.g., *E. coli* or yeast) followed by purification via affinity chromatography. Beyond its role as a selection marker, HPH has been studied for its enzymatic mechanisms and potential applications in antibiotic resistance research. However, its use is carefully regulated in genetically modified organisms (GMOs) to prevent environmental release concerns.
Overall, HPH remains a cornerstone in genetic engineering, balancing practicality with the ongoing need for improved selection systems in synthetic biology and therapeutic development.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×