纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | pbpA |
Uniprot No | A5I6G4 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 663-830aa |
氨基酸序列 | VDRISGKLPTQLSYRDPRGSTVYNEFFINGTIPTEYDDIHVEAQINKLTGKLASKFTPSFLVESRVFLRRDYSPGVELLDQQWLLPYSIDEGGSLPPTEEKNNSNTRDKNKDKNKNKNKDKNPSQDKPNNNNNDNNSNNNNNNNDNNNNTKPPENDSNQNHEDNKNKQ |
预测分子量 | 35.2 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于pbpA重组蛋白的模拟参考文献示例(仅供参考,建议通过PubMed或Google Scholar验证具体文献):
---
1. **文献名称**: *"Cloning, Expression, and Purification of the Recombinant pbpA Gene from Escherichia coli K-12"*
**作者**: Smith J, et al.
**摘要**: 本研究报道了大肠杆菌K-12中pbpA基因的克隆与重组表达,通过构建表达载体并在大肠杆菌BL21(DE3)中诱导表达,纯化获得可溶性重组蛋白。酶活性分析表明,该蛋白具有羧肽酶活性,且对青霉素类抗生素敏感性降低。
2. **文献名称**: *"Structural Characterization of Recombinant pbpA from Streptococcus pneumoniae and Its Interaction with β-Lactams"*
**作者**: Lee H, et al.
**摘要**: 通过X射线晶体学解析了肺炎链球菌重组pbpA蛋白的三维结构,揭示了其与青霉素结合的结构域特征。体外实验表明,pbpA突变可导致β-内酰胺类药物亲和力下降,为耐药机制提供结构依据。
3. **文献名称**: *"Functional Analysis of Recombinant pbpA in Staphylococcus aureus Cell Wall Synthesis"*
**作者**: Zhang R, et al.
**摘要**: 通过重组表达金黄色葡萄球菌pbpA蛋白,研究其在肽聚糖交联中的作用。基因敲除与回补实验证明,pbpA缺失导致细胞壁缺陷,重组蛋白可部分恢复表型,提示其在细胞分裂中的关键功能。
4. **文献名称**: *"Development of a Recombinant pbpA-Based ELISA for Serodiagnosis of Helicobacter pylori Infection"*
**作者**: Tanaka M, et al.
**摘要**: 利用重组表达的幽门螺杆菌pbpA蛋白建立血清学检测方法,验证其在临床样本中的敏感性和特异性,证明其作为诊断标志物的潜力。
---
**备注**:以上内容为模拟生成,实际文献需通过学术数据库检索。建议使用关键词“pbpA recombinant protein”或结合特定病原体名称(如Escherichia coli pbpA)进行精确查询。
**Background of pbpA Recombinant Protein**
The penicillin-binding protein A (PbpA) is a bacterial enzyme critical for cell wall synthesis and remodeling, primarily in *Streptococcus pneumoniae* and related species. As a member of the penicillin-binding protein (PBP) family, PbpA exhibits transpeptidase and carboxypeptidase activities, facilitating cross-linking of peptidoglycan strands during cell division. Its role in maintaining cell wall integrity makes it a target for β-lactam antibiotics, which inhibit PbpA by covalently binding to its active site. However, widespread antibiotic resistance has emerged due to mutations in *pbpA* genes, reducing drug affinity and complicating treatment strategies.
Recombinant PbpA protein is produced via genetic engineering, typically by cloning the *pbpA* gene into expression vectors (e.g., *E. coli*), followed by purification. This approach enables large-scale production of the protein for structural, functional, and immunological studies. Researchers utilize recombinant PbpA to investigate mechanisms of antibiotic resistance, particularly how amino acid substitutions alter enzyme structure and β-lactam susceptibility. Structural analyses, such as X-ray crystallography, reveal conformational changes that underpin resistance phenotypes.
Additionally, recombinant PbpA serves as a candidate antigen for vaccine development. Antibodies targeting PbpA may enhance opsonophagocytic clearance of pneumococci, offering protection against infections. Its immunogenicity and conservation across pneumococcal strains make it a promising component for next-generation vaccines. Furthermore, PbpA-based assays are employed in diagnostics to detect resistant bacterial strains or evaluate novel β-lactamase inhibitors.
Overall, recombinant PbpA is a vital tool in understanding bacterial pathogenesis, advancing antimicrobial therapies, and addressing the global challenge of antibiotic resistance. Its study bridges microbiology, structural biology, and translational medicine, highlighting its multifaceted significance in both research and clinical applications.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×