纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | TPR |
Uniprot No | P12270 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-2363aa |
氨基酸序列 | MAAVLQQVLERTELNKLPKSVQNKLEKFLADQQSEIDGLKGRHEKFKVESEQQYFEIEKRLSHSQERLVNETRECQSLRLELEKLNNQLKALTEKNKELEIAQDRNIAIQSQFTRTKEELEAEKRDLIRTNERLSQELEYLTEDVKRLNEKLKESNTTKGELQLKLDELQASDVSVKYREKRLEQEKELLHSQNTWLNTELKTKTDELLALGREKGNEILELKCNLENKKEEVSRLEEQMNGLKTSNEHLQKHVEDLLTKLKEAKEQQASMEEKFHNELNAHIKLSNLYKSAADDSEAKSNELTRAVEELHKLLKEAGEANKAIQDHLLEVEQSKDQMEKEMLEKIGRLEKELENANDLLSATKRKGAILSEEELAAMSPTAAAVAKIVKPGMKLTELYNAYVETQDQLLLEKLENKRINKYLDEIVKEVEAKAPILKRQREEYERAQKAVASLSVKLEQAMKEIQRLQEDTDKANKQSSVLERDNRRMEIQVKDLSQQIRVLLMELEEARGNHVIRDEEVSSADISSSSEVISQHLVSYRNIEELQQQNQRLLVALRELGETREREEQETTSSKITELQLKLESALTELEQLRKSRQHQMQLVDSIVRQRDMYRILLSQTTGVAIPLHASSLDDVSLASTPKRPSTSQTVSTPAPVPVIESTEAIEAKAALKQLQEIFENYKKEKAENEKIQNEQLEKLQEQVTDLRSQNTKISTQLDFASKRYEMLQDNVEGYRREITSLHERNQKLTATTQKQEQIINTMTQDLRGANEKLAVAEVRAENLKKEKEMLKLSEVRLSQQRESLLAEQRGQNLLLTNLQTIQGILERSETETKQRLSSQIEKLEHEISHLKKKLENEVEQRHTLTRNLDVQLLDTKRQLDTETNLHLNTKELLKNAQKEIATLKQHLSNMEVQVASQSSQRTGKGQPSNKEDVDDLVSQLRQTEEQVNDLKERLKTSTSNVEQYQAMVTSLEESLNKEKQVTEEVRKNIEVRLKESAEFQTQLEKKLMEVEKEKQELQDDKRRAIESMEQQLSELKKTLSSVQNEVQEALQRASTALSNEQQARRDCQEQAKIAVEAQNKYERELMLHAADVEALQAAKEQVSKMASVRQHLEETTQKAESQLLECKASWEERERMLKDEVSKCVCRCEDLEKQNRLLHDQIEKLSDKVVASVKEGVQGPLNVSLSEEGKSQEQILEILRFIRREKEIAETRFEVAQVESLRYRQRVELLERELQELQDSLNAEREKVQVTAKTMAQHEELMKKTETMNVVMETNKMLREEKERLEQDLQQMQAKVRKLELDILPLQEANAELSEKSGMLQAEKKLLEEDVKRWKARNQHLVSQQKDPDTEEYRKLLSEKEVHTKRIQQLTEEIGRLKAEIARSNASLTNNQNLIQSLKEDLNKVRTEKETIQKDLDAKIIDIQEKVKTITQVKKIGRRYKTQYEELKAQQDKVMETSAQSSGDHQEQHVSVQEMQELKETLNQAETKSKSLESQVENLQKTLSEKETEARNLQEQTVQLQSELSRLRQDLQDRTTQEEQLRQQITEKEEKTRKAIVAAKSKIAHLAGVKDQLTKENEELKQRNGALDQQKDELDVRITALKSQYEGRISRLERELREHQERHLEQRDEPQEPSNKVPEQQRQITLKTTPASGERGIASTSDPPTANIKPTPVVSTPSKVTAAAMAGNKSTPRASIRPMVTPATVTNPTTTPTATVMPTTQVESQEAMQSEGPVEHVPVFGSTSGSVRSTSPNVQPSISQPILTVQQQTQATAFVQPTQQSHPQIEPANQELSSNIVEVVQSSPVERPSTSTAVFGTVSATPSSSLPKRTREEEEDSTIEASDQVSDDTVEMPLPKKLKSVTPVGTEEEVMAEESTDGEVETQVYNQDSQDSIGEGVTQGDYTPMEDSEETSQSLQIDLGPLQSDQQTTTSSQDGQGKGDDVIVIDSDDEEEDDDENDGEHEDYEEDEEDDDDDEDDTGMGDEGEDSNEGTGSADGNDGYEADDAEGGDGTDPGTETEESMGGGEGNHRAADSQNSGEGNTGAAESSFSQEVSREQQPSSASERQAPRAPQSPRRPPHPLPPRLTIHAPPQELGPPVQRIQMTRRQSVGRGLQLTPGIGGMQQHFFDDEDRTVPSTPTLVVPHRTDGFAEAIHSPQVAGVPRFRFGPPEDMPQTSSSHSDLGQLASQGGLGMYETPLFLAHEEESGGRSVPTTPLQVAAPVTVFTESTTSDASEHASQSVPMVTTSTGTLSTTNETATGDDGDEVFVEAESEGISSEAGLEIDSQQEEEPVQASDESDLPSTSQDPPSSSSVDTSSSQPKPFRRVRLQTTLRQGVRGRQFNRQRGVSHAMGGRGGINRGNIN |
预测分子量 | 267 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于TPR重组蛋白的3篇参考文献示例(注:文献为虚构,仅供格式参考):
---
1. **文献名称**: *Modular Design of TPR Recombinant Proteins for Targeted Protein-Protein Interactions*
**作者**: Allan, R.K., et al.
**摘要**: 本研究利用TPR(四肽重复)结构域的模块化特性,设计并表达了一系列重组TPR蛋白。通过结构分析和体外结合实验,验证了其特异性结合HSP90等伴侣蛋白的能力,为开发基于TPR的蛋白相互作用调控工具提供理论基础。
---
2. **文献名称**: *Engineering Thermostable TPR Recombinant Proteins for Anticancer Drug Delivery*
**作者**: Chen, L., & Zhang, Y.
**摘要**: 作者通过理性设计改造TPR重组蛋白的疏水核心,显著提高了其热稳定性(Tm值提升15℃)。改造后的蛋白在体外成功靶向癌细胞表面的异常伴侣蛋白,并在小鼠模型中展现出增强的抗肿瘤药物递送效率。
---
3. **文献名称**: *High-Yield Production of TPR Recombinant Proteins in E. coli: Optimization and Functional Characterization*
**作者**: Brown, T., et al.
**摘要**: 报道了一种在大肠杆菌中高效表达TPR重组蛋白的方法,通过密码子优化和融合标签筛选,使产量达到20 mg/L。纯化蛋白经圆二色谱和SPR分析证实其正确折叠及与靶蛋白的纳摩尔级亲和力。
---
**注**:以上文献为模拟内容,实际研究中建议通过PubMed或Web of Science以关键词“TPR domain recombinant protein”检索真实文献。
Tetratricopeptide repeat (TPR) recombination proteins are synthetic or engineered proteins designed by rearranging or combining TPR motifs, a naturally occurring structural domain found in many proteins. TPR motifs are short, degenerate sequences of ~34 amino acids that form helix-turn-helix structures, typically arranged in tandem repeats. These repeats stack to create a superhelical scaffold with a conserved groove, enabling interactions with partner proteins or peptides. Naturally, TPR-containing proteins participate in diverse cellular processes, including chaperone activity, signal transduction, and cell cycle regulation, by mediating protein-protein interactions.
The concept of TPR recombination emerged from advances in protein engineering and synthetic biology. Researchers exploit the modularity and adaptability of TPR motifs to design custom proteins with tailored binding properties. By rearranging the number, order, or sequence of TPR repeats, scientists can create chimeric proteins that bind specific targets, such as disease-related peptides or signaling molecules. This approach leverages the TPR domain’s intrinsic stability and structural predictability, making it an attractive scaffold for biomedical applications.
TPR recombinant proteins have shown promise in therapeutic development, particularly for inhibiting protein-protein interactions implicated in cancer, neurodegenerative diseases, and viral infections. For example, engineered TPR proteins can block pathogenic interactions by mimicking natural binding partners or acting as competitive inhibitors. Additionally, their modular design allows fusion with functional domains (e.g., fluorescent tags or enzymes) for diagnostic or catalytic purposes.
Challenges include optimizing specificity, stability, and production yields, but ongoing innovations in computational modeling and directed evolution are addressing these limitations. TPR recombination exemplifies the fusion of structural biology and bioengineering, offering a versatile platform for creating functional proteins with applications in medicine, biotechnology, and synthetic biology.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×