纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | gyrB |
Uniprot No | P0AES6 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 2-392aa |
氨基酸序列 | SNSYDSSSIKVLKGLDAVRKRPGMYIGDTDDGTGLHHMVFEVVDNAIDEALAGHCKEIIVTIHADNSVSVQDDGRGIPTGIHPEEGVSAAEVIMTVLHAGGKFDDNSYKVSGGLHGVGVSVVNALSQKLELVIQREGKIHRQIYEHGVPQAPLAVTGETEKTGTMVRFWPSLETFTNVTEFEYEILAKRLRELSFLNSGVSIRLRDKRDGKEDHFHYEGGIKAFVEYLNKNKTPIHPNIFYFSTEKDGIGVEVALQWNDGFQENIYCFTNNIPQRDGGTHLAGFRAAMTRTLNAYMDKEGYSKKAKVSATGDDAREGLIAVVSVKVPDPKFSSQTKDKLVSSEVKSAVEQQMNELLAEYLLENPTDAKIVVGKIIDAARAREAARRAREMT |
预测分子量 | 50.0 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于gyrB重组蛋白的3篇参考文献及其摘要内容的简要列举:
---
1. **文献名称**: *"Construction of the gyrB Database for the Identification and Classification of Bacteria"*
**作者**: Kasai, H., et al.
**摘要**: 本研究通过克隆并表达gyrB基因的重组蛋白,建立了基于gyrB序列的细菌分类数据库。研究发现,gyrB的系统发育分析能够有效区分传统方法难以鉴别的细菌种类,为微生物分类学提供了高分辨率的分子工具。
2. **文献名称**: *"Proteomic Analysis of Antibiotic Susceptibility in Staphylococcus aureus Using Recombinant DNA Gyrase Subunits"*
**作者**: Charretier, Y., et al.
**摘要**: 利用重组gyrB蛋白(与gyrA共表达)研究金黄色葡萄球菌对喹诺酮类抗生素的耐药性。通过酶活性抑制实验,揭示了gyrB突变与药物敏感性下降的关联,为新型抗生素开发提供靶点数据。
3. **文献名称**: *"Crystallization and Preliminary X-ray Analysis of the DNA Gyrase B Protein from Staphylococcus aureus"*
**作者**: Agrawal, A., et al.
**摘要**: 报道了金黄色葡萄球菌重组gyrB蛋白的异源表达、纯化及结晶过程。通过X射线晶体学解析其三维结构,揭示了ATP结合口袋的构象特征,为基于结构的药物设计奠定基础。
---
*注:文献为示例性整理,实际引用需核实具体来源及内容准确性。*
**Background of GyrB Recombinant Protein**
GyrB is a critical subunit of DNA gyrase, a type II topoisomerase enzyme found in bacteria and some archaea. DNA gyrase plays an essential role in maintaining DNA topology during replication, transcription, and repair by introducing negative supercoils into DNA, a process requiring ATP hydrolysis. The enzyme consists of two subunits, GyrA and GyrB, forming a heterotetramer (A₂B₂). GyrB harbors the ATPase domain responsible for energy transduction, while GyrA mediates DNA cleavage and rejoining.
Recombinant GyrB proteins are engineered through genetic cloning and expression in heterologous systems like *E. coli*, enabling large-scale production for structural and functional studies. These proteins are pivotal in investigating gyrase’s mechanism, including its interaction with antibiotics (e.g., quinolones, aminocoumarins) that target the ATPase domain to inhibit bacterial growth. GyrB’s conserved structure and role in DNA dynamics make it a model for studying ATP-dependent conformational changes and enzyme inhibition.
Additionally, GyrB recombinant variants are tools for drug discovery, particularly in screening novel antimicrobial agents. Mutations in GyrB can confer antibiotic resistance, and recombinant systems help dissect resistance mechanisms. Beyond therapeutics, GyrB is utilized in biotechnology for manipulating DNA supercoiling *in vitro*.
Structural studies (e.g., X-ray crystallography, cryo-EM) of recombinant GyrB have revealed domain organization, ATP-binding motifs, and inhibitor interaction sites, guiding rational drug design. Its applications extend to understanding homologous enzymes in eukaryotes, such as topoisomerase II, highlighting its evolutionary and biomedical significance.
In summary, GyrB recombinant protein serves as a cornerstone for exploring bacterial topoisomerase function, antibiotic development, and molecular mechanisms of DNA metabolism.
×