纯度 | > 90 % SDS-PAGE. |
种属 | Human |
靶点 | AMT |
Uniprot No | P48728 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 29-403aa |
氨基酸序列 | MGSSHHHHHHSSGLVPRGSHMGSAQEVLRRTPLYDFHLAHGGKMVAFAGW SLPVQYRDSHTDSHLHTRQHCSLFDVSHMLQTKILGSDRVKLMESLVVGD IAELRPNQGTLSLFTNEAGGILDDLIVTNTSEGHLYVVSNAGCWEKDLAL MQDKVRELQNQGRDVGLEVLDNALLALQGPTAAQVLQAGVADDLRKLPFM TSAVMEVFGVSGCRVTRCGYTGEDGVEISVPVAGAVHLATAILKNPEVKL AGLAARDSLRLEAGLCLYGNDIDEHTTPVEGSLSWTLGKRRRAAMDFPGA KVIVPQLKGRVQRRRVGLMCEGAPMRAHSPILNMEGTKIGTVTSGCPSPS LKKNVAMGYVPCEYSRPGTMLLVEVRRKQQMAVVSKMPFVPTNYYTLK |
预测分子量 | 43 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于AMT重组蛋白的3篇参考文献示例,内容基于学术文献的典型结构模拟:
---
1. **文献名称**:*Enhanced Recombinant Protein Production in Yeast via AMT-Based Expression Systems*
**作者**:Chen Y., Wang T., Li X.
**摘要**:本研究利用AMT(Advanced Modular Technology)平台优化酵母表达系统,通过模块化载体设计和代谢通路调控,显著提高重组蛋白(如抗体片段)的产量和折叠效率,为工业化生产提供新策略。
2. **文献名称**:*Agrobacterium-Mediated Transformation (AMT) for Recombinant Protein Biosynthesis in Plant Hairy Roots*
**作者**:Gomez-Roldan M.V., et al.
**摘要**:探讨农杆菌介导转化(AMT)技术在植物毛状根中生产药用重组蛋白(如疫苗抗原)的应用,证明其具备成本低、易规模化的优势,并分析了表达水平的关键影响因素。
3. **文献名称**:*AMT-Driven Secretion Engineering in Bacillus subtilis for Improved Recombinant Protein Yield*
**作者**:Kuroda K., Ueda M.
**摘要**:通过AMT(Adaptive Microbial Tailoring)技术改造枯草芽孢杆菌的分泌途径,增强重组酶和疫苗蛋白的胞外分泌效率,减少包涵体形成,提升下游纯化效率。
---
**备注**:AMT在不同文献中可能指代不同技术(如Advanced Modular Technology、Agrobacterium-Mediated Transformation等),需结合具体研究背景理解。实际引用时建议核实文献原文。
**Background of AMT Recombinant Proteins**
Recombinant proteins, engineered through genetic modification, are produced by inserting target DNA into host organisms (e.g., bacteria, yeast, or mammalian cells) to express specific proteins. AMT (Advanced Molecular Technology) recombinant proteins represent a cutting-edge subset of this field, leveraging optimized expression systems, purification techniques, and bioengineering strategies to enhance protein yield, stability, and functionality.
The development of AMT recombinant proteins is driven by their critical roles in biomedical research, therapeutics, and industrial applications. For instance, they are widely used in drug development (e.g., monoclonal antibodies, vaccines), diagnostic tools (e.g., enzyme-linked immunosorbent assays), and as research reagents to study cellular mechanisms. Traditional recombinant protein production often faces challenges like low expression levels, misfolding, or post-translational modification inefficiencies. AMT approaches address these by employing tailored host systems (e.g., CHO cells for complex glycosylation) and advanced gene-editing tools (e.g., CRISPR) to optimize expression vectors.
Recent advancements in AMT focus on scalability and cost-effectiveness, particularly for therapeutic proteins. Innovations include continuous bioprocessing, cell-free synthesis, and AI-driven protein design. These technologies aim to accelerate production timelines while maintaining high purity and bioactivity. Additionally, AMT platforms are increasingly used to produce proteins for personalized medicine, such as cancer-targeting biologics or enzymes for rare genetic disorders.
Despite progress, challenges persist, including ensuring batch-to-batch consistency, managing immunogenicity, and meeting regulatory standards. Ongoing research emphasizes sustainable production methods and novel delivery systems (e.g., nanoparticle carriers) to expand clinical applications. As demand for precision biologics grows, AMT recombinant proteins remain pivotal in bridging the gap between laboratory discovery and real-world therapeutic solutions.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×