纯度 | >95%SDS-PAGE. |
种属 | Human |
靶点 | CTCF |
Uniprot No | P49711 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-154aa |
氨基酸序列 | MEGDAVEAIVEESETFIKGKERKTYQRRREGGQEEDACHLPQNQTDGGEV VQDVNSSVQMVMMEQLDPTLLQMKTEVMEGTVAPEAEAAVDDTQIITLQV VNMEEQPINIGELQLVQVPVPVTVPVATTSVEELQGAYENEVSKEGLAES EPMI |
预测分子量 | 17 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于CTCF重组蛋白的3篇参考文献,包含文献名称、作者及摘要概括:
---
1. **文献名称**:*Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene*
**作者**:Bell, A.C., Felsenfeld, G.
**摘要**:该研究首次鉴定了CTCF作为绝缘子结合蛋白的功能,发现其通过结合甲基化敏感位点调控基因印记,例如控制胰岛素样生长因子2(Igf2)的等位基因特异性表达。研究揭示了CTCF在表观遗传调控中的关键作用。
2. **文献名称**:*Cohesin and CTCF Form Chromatin Loops at Domain Boundaries*
**作者**:Rao, S.S.P., et al.
**摘要**:通过高分辨率Hi-C技术,研究发现CTCF与粘连蛋白(cohesin)协同作用,介导染色质环的形成和拓扑关联域(TADs)的边界维持,揭示了CTCF在三维基因组结构组织中的核心机制。
3. **文献名称**:*Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA*
**作者**:Hashimoto, H., et al.
**摘要**:该研究通过X射线晶体学解析了CTCF锌指结构域与DNA结合的分子机制,阐明了CTCF如何通过不同锌指组合识别多样化的DNA序列,并受DNA甲基化调控的结合特性。
---
以上文献涵盖了CTCF在基因调控、三维基因组架构及结构生物学领域的重要研究,均为该领域的经典或突破性成果。
CTCF (CCCTC-binding factor) is a highly conserved, multifunctional zinc finger protein critical for organizing 3D genome architecture and regulating gene expression. First identified in 1990 as a transcriptional repressor, CTCF has since emerged as a master regulator of chromatin organization. It contains an 11-zinc-finger domain enabling sequence-specific DNA binding, recognizing diverse motifs (∼50 bp) across the genome.
A key role of CTCF lies in forming chromatin loop boundaries and mediating long-range interactions between genomic regions. It facilitates the formation of topologically associating domains (TADs) by cooperating with cohesin complexes, thereby insulating transcriptional units or enabling enhancer-promoter communication. This "architectural" function underpins its involvement in X-chromosome inactivation, genomic imprinting, and V(D)J recombination.
CTCF also acts as an insulator protein, blocking inappropriate cross-talk between neighboring chromatin regions. Its orientation-dependent binding and post-translational modifications (e.g., phosphorylation) enable context-specific regulatory effects. Recombinant CTCF proteins, typically produced in bacterial or mammalian expression systems, are essential tools for studying these mechanisms. They are used in chromatin conformation capture (3C/Hi-C), in vitro binding assays, and structural studies to dissect DNA interaction dynamics.
Dysregulation of CTCF is linked to developmental disorders and cancers, with mutations found in ~20% of tumors. Recombinant CTCF variants help model these pathogenic alterations, offering insights into disease mechanisms and potential therapeutic targets. Its conserved role across species and versatile functionality make CTCF a cornerstone protein in epigenetics and genome biology research.
×