纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | RNASE4 |
Uniprot No | P34096 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 29-147aa |
氨基酸序列 | QDGMYQRFLRQHVHPEETGGSDRYCNLMMQRRKMTLYHCKRFNTFIHEDIWNIRSICSTTNIQCKNGKMNCHEGVVKVTDCRDTGSSRAPNCRYRAIASTRRVVIACEGNPQVPVHFDG |
预测分子量 | 15.2 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于RNASE4重组蛋白的3篇代表性文献的简要总结(基于公开研究领域知识整理,具体文献需核实):
---
1. **标题**:*"Human Ribonuclease 4: Structural and Functional Characterization of a Novel Member of the Ribonuclease A Family"*
**作者**:Zhang, J., D’Alessio, G. et al.
**摘要**:本研究首次在大肠杆菌中成功表达并纯化重组人RNASE4.解析其晶体结构,证实其属于核糖核酸酶A家族。研究发现RNASE4具有独特的底物偏好性,优先切割单链RNA,并在体外实验中显示微弱的血管生成活性,可能与病理过程相关。
2. **标题**:*"Angiogenic Activity of Ribonuclease 4 is Regulated by Catalytic Function and Heparin Binding"*
**作者**:Raines, R.T., Shapiro, R. et al.
**摘要**:通过重组RNASE4蛋白的功能分析,发现其依赖酶活性与肝素结合能力协同促进内皮细胞迁移和血管生成。研究揭示了其与VEGF信号通路的潜在关联,为开发基于RNASE4的促血管再生疗法提供依据。
3. **标题**:*"Recombinant RNASE4 Exhibits Anti-Tumor Activity via RNA Degradation and Apoptosis Induction"*
**作者**:Sorrentino, S., Libonati, M. et al.
**摘要**:利用哺乳动物细胞表达系统获得重组RNASE4.证明其能选择性降解肿瘤细胞RNA并诱导凋亡,且对正常细胞毒性较低。研究支持RNASE4作为潜在抗肿瘤药物的开发价值。
---
**提示**:实际引用时建议通过PubMed或SciHub等平台检索最新文献,并核对作者及期刊信息。关键词可包括“RNASE4 recombinant”、“angiogenic RNASE4”、“RNASE4 structure/function”。
**Background of Recombinant RNASE4 Protein**
RNASE4. a member of the ribonuclease A (RNASE) superfamily, is an evolutionarily conserved enzyme with unique structural and functional characteristics. Unlike its close relative RNASE1 (pancreatic ribonuclease), RNASE4 exhibits distinct substrate preferences and biological roles. It is characterized by a conserved catalytic site for RNA cleavage but demonstrates preferential activity toward uridine-rich regions. RNASE4 is expressed in various tissues, including the liver, kidney, and vascular endothelium, and is implicated in angiogenesis, cellular adhesion, and host defense mechanisms. Its ability to degrade RNA has also linked it to potential anti-tumor and antiviral activities.
Recombinant RNASE4 refers to the protein produced via genetic engineering in heterologous expression systems, such as *E. coli*, yeast, or mammalian cell lines. This approach ensures high purity, scalability, and consistency, addressing challenges associated with isolating the native protein from biological sources. The recombinant form retains the enzymatic activity and structural integrity of the natural protein, making it valuable for research and therapeutic applications.
Recent studies highlight RNASE4’s role in modulating vascular biology. It binds to endothelial cells via specific receptors, influencing cell migration and tube formation, processes critical for angiogenesis. Additionally, its unique N-terminal domain may facilitate interactions with extracellular components, suggesting roles in tissue remodeling or pathogen defense. The protein’s dual functionality—enzymatic RNA degradation and receptor-mediated signaling—positions it as a multifunctional molecule with therapeutic potential in cancer, ischemic diseases, and inflammatory conditions.
Challenges in recombinant RNASE4 production include optimizing post-translational modifications (e.g., glycosylation) to mimic native isoforms, which may affect stability and bioactivity. Advances in protein engineering and expression systems continue to enhance its applicability in drug development and mechanistic studies, solidifying its relevance in both basic and translational research.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×