纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | FADS3 |
Uniprot No | Q9Y5Q0 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-445aa |
氨基酸序列 | MGGVGEPGPREGPAQPGAPLPTFCWEQIRAHDQPGDKWLVIERRVYDISRWAQRHPGGSRLIGHHGAEDATDAFRAFHQDLNFVRKFLQPLLIGELAPEEPSQDGPLNAQLVEDFRALHQAAEDMKLFDASPTFFAFLLGHILAMEVLAWLLIYLLGPGWVPSALAAFILAISQAQSWCLQHDLGHASIFKKSWWNHVAQKFVMGQLKGFSAHWWNFRHFQHHAKPNIFHKDPDVTVAPVFLLGESSVEYGKKKRRYLPYNQQHLYFFLIGPPLLTLVNFEVENLAYMLVCMQWADLLWAASFYARFFLSYLPFYGVPGVLLFFVAVRVLESHWFVWITQMNHIPKEIGHEKHRDWVSSQLAATCNVEPSLFTNWFSGHLNFQIEHHLFPRMPRHNYSRVAPLVKSLCAKHGLSYEVKPFLTALVDIVRSLKKSGDIWLDAYLHQ |
预测分子量 | 51,1 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于FADS3重组蛋白的3篇参考文献及其摘要概述:
---
1. **标题**: *Functional Characterization of Recombinant Human FADS3 Protein: Substrate Specificity and Role in Fatty Acid Metabolism*
**作者**: Zhang Y, et al.
**摘要**: 该研究在大肠杆菌中成功表达了重组人源FADS3蛋白,并分析了其对多种脂肪酸底物的催化活性。研究发现FADS3对极长链脂肪酸(如C24:0)具有特异性去饱和作用,揭示了其在神经鞘脂代谢中的潜在作用。
---
2. **标题**: *Expression and Purification of FADS3 in Mammalian Cells: Insights into Its Structural and Enzymatic Properties*
**作者**: Müller R, et al.
**摘要**: 研究团队在HEK293细胞中重组表达了FADS3蛋白,并通过亲和层析纯化。酶动力学实验表明,FADS3在特定pH和温度条件下活性最高,且依赖细胞色素b5作为辅因子,为后续功能研究提供了实验基础。
---
3. **标题**: *FADS3 Recombinant Protein Modulates Lipid Composition in Human Keratinocytes: Implications for Skin Barrier Function*
**作者**: Lee S, et al.
**摘要**: 通过体外重组FADS3蛋白递送至人角质细胞,研究发现其显著改变了细胞膜中ω-3和ω-6多不饱和脂肪酸的比例,表明FADS3可能在皮肤屏障脂质合成中起关键作用,为治疗皮肤疾病提供了新靶点。
---
**备注**:以上文献信息为示例性内容,实际研究中请通过数据库(如PubMed、Web of Science)检索具体文献。建议结合关键词“FADS3 recombinant protein”“fatty acid desaturase”进一步筛选近期研究。
FADS3 (Fatty Acid Desaturase 3) is a member of the fatty acid desaturase enzyme family, which plays a critical role in the biosynthesis of polyunsaturated fatty acids (PUFAs). Unlike its well-characterized homologs FADS1 and FADS2—key enzymes in converting linoleic acid (LA) and alpha-linolenic acid (ALA) into long-chain PUFAs like arachidonic acid (AA) and docosahexaenoic acid (DHA)—FADS3 has remained enigmatic due to its distinct substrate specificity and limited functional characterization. Initially identified through genomic studies, the FADS3 gene is located in the FADS cluster on chromosome 11 in humans, sharing structural similarities with FADS1 and FADS2 but exhibiting unique catalytic properties.
Recombinant FADS3 protein, produced via heterologous expression systems (e.g., yeast, mammalian cells, or Escherichia coli), enables researchers to study its enzymatic activity and regulatory mechanisms. Emerging evidence suggests FADS3 may desaturate unconventional substrates, such as sphingolipid-associated fatty acids or trans-fatty acids, potentially influencing membrane fluidity, lipid signaling, and metabolic health. Its role in synthesizing nervonic acid (24:1n-9), crucial for myelination in the nervous system, highlights its physiological significance. However, conflicting reports about its catalytic function and tissue-specific expression patterns (e.g., high levels in brain, skin, and placenta) underscore the complexity of its biological roles.
Research on recombinant FADS3 is advancing our understanding of lipid metabolism disorders, neurodevelopment, and diseases like cancer or metabolic syndrome. Challenges persist in elucidating its precise mechanisms, interaction partners, and regulatory pathways, driving demand for further biochemical and structural studies. The protein’s unique properties also make it a potential target for biotechnology applications, including engineered lipid production or therapeutic interventions.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×