纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | MR |
Uniprot No | Q95460 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 201-300aa |
氨基酸序列 | TEPPLVRVNRKETFPGVTALFCKAHGFYPPEIYMTWMKNGEEIVQEIDYG DILPSGDGTYQAWASIELDPQSSNLYSCHVEHCGVHMVLQVPQESETIPL |
预测分子量 | kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于甘露糖受体(Mannose Receptor, MR/CD206)重组蛋白研究的示例参考文献格式(内容为模拟构造,仅供参考):
---
1. **文献名称**:*Recombinant Human Mannose Receptor as a Targeted Drug Delivery System for Macrophages*
**作者**:Smith J. et al.
**摘要**:本研究成功表达并纯化了重组人甘露糖受体(rhMR),验证其与甘露糖化抗原的特异性结合能力,并证明其在体外可定向递送药物至巨噬细胞,为炎症靶向治疗提供新策略。
2. **文献名称**:*Structural Characterization of the Mannose Receptor via X-ray Crystallography*
**作者**:Li Y. et al.
**摘要**:通过重组表达MR的胞外结构域,解析其晶体结构,揭示其糖类结合域的构象变化机制,为设计基于MR的免疫调节分子奠定结构基础。
3. **文献名称**:*Expression Optimization of Recombinant MR in Insect Cells for Functional Studies*
**作者**:Garcia R. et al.
**摘要**:利用杆状病毒-昆虫细胞系统优化MR重组蛋白表达条件,获得高活性蛋白,应用于病原体识别实验,证实其在先天免疫中的关键作用。
4. **文献名称**:*Role of Recombinant MR in Modulating Dendritic Cell Responses*
**作者**:Wang H. et al.
**摘要**:通过重组MR蛋白研究树突状细胞的抗原摄取机制,发现MR介导的内吞途径可增强抗原呈递效率,为疫苗佐剂开发提供依据。
---
**注意**:以上文献为示例性内容,实际引用需通过学术数据库(如PubMed、Web of Science)检索关键词“Mannose Receptor recombinant protein”或“CD206 recombinant”获取真实文献。研究领域可涵盖结构生物学、药物递送、免疫调控等方向。
**Background of MR Recombinant Proteins**
Recombinant proteins, including MR (mannose receptor or other MR-designated proteins), are engineered through genetic modification to express specific functional molecules. The term "MR" may refer to various proteins, such as the mannose receptor (CD206), a key player in innate immunity, or other targets like the melanocortin receptor or multidrug resistance-associated proteins. These proteins are typically produced using recombinant DNA technology, where the gene encoding the target protein is cloned into a host organism (e.g., bacteria, yeast, or mammalian cells) to enable large-scale production.
The development of MR recombinant proteins stems from advances in molecular biology and biopharmaceutical research. For instance, the mannose receptor, a C-type lectin expressed on macrophages and dendritic cells, is crucial for pathogen recognition and antigen presentation. Recombinant versions of MR-related proteins have been instrumental in studying immune responses, vaccine development, and therapeutic interventions. Similarly, recombinant multidrug resistance-associated proteins are explored for their role in drug transport and cancer therapy resistance.
Applications of MR recombinant proteins span therapeutics, diagnostics, and research tools. They are used to design targeted therapies, such as receptor-blocking agents or drug delivery systems. In diagnostics, MR-based assays help detect biomarkers or pathogens. The production process involves optimizing expression systems to ensure proper folding, post-translational modifications, and functionality—challenges that vary depending on the protein’s complexity. Mammalian systems are often preferred for human-derived MR proteins requiring glycosylation.
Despite progress, challenges remain, including high production costs, scalability issues, and maintaining bioactivity. Ongoing innovations in synthetic biology, CRISPR editing, and AI-driven protein design aim to address these hurdles. MR recombinant proteins continue to hold promise in personalized medicine, infectious disease management, and oncology, reflecting their versatility in bridging basic science and clinical translation.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×