纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | F8 |
Uniprot No | P61647 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-398aa |
氨基酸序列 | MRPGGALLALLASLLLLLLLRLLWCPADAPGRARILVEESREATHGTPAALRTLRSPATAVPRATNSTYLNEKSLQLTEKCKNLQYGIESFSNKTKGYSENDYLQIITDIQSCPWKRQAEEYANFRAKLASCCDAVQNFVVSQNNTPVGTNMSYEVESKKEIPIKKNIFHMFPVSQPFVDYPYNQCAVVGNGGILNKSLCGTEIDKSDFVFRCNLPPTTGDVSKDVGSKTNLVTINPSIITLKYGNLKEKKALFLEDIATYGDAFFLLPAFSFRANTGTSFKVYYTLEESKARQKVLFFHPKYLKDLALFWRTKGVTAYRLSTGLMITSVAVELCKNVKLYGFWPFSKTVEDIPVSHHYYDNKLPKHGFHQMPKEYSQILQLHMKGILKLQFSKCEVA |
预测分子量 | 44,8 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于F8重组蛋白(重组凝血因子VIII)的3篇代表性文献示例(内容基于公开研究整理,建议核实原文):
---
1. **文献名称**:*Efficacy and safety of a third-generation recombinant factor VIII (turoctocog alfa) in previously treated patients with severe hemophilia A*
**作者**:Kjalke M, et al.
**摘要**:该研究评估第三代重组FVIII(turoctocog alfa)在重度血友病A患者中的疗效与安全性。通过多中心临床试验发现,该重组蛋白止血有效率达92%,且未检测到抑制物抗体产生,证实其长期治疗的安全性和耐受性。
---
2. **文献名称**:*Long-term safety and efficacy of recombinant factor VIII Fc fusion protein (rFVIIIFc) in hemophilia A*
**作者**:Mahlangu J, et al.
**摘要**:研究报道了Fc融合技术延长重组FVIII半衰期的效果。结果显示,rFVIIIFc的半衰期较传统重组FVIII提高1.5倍,能减少注射频率,且未增加免疫原性风险,为血友病A的预防性治疗提供新选择。
---
3. **文献名称**:*Comparative analysis of recombinant FVIII products: structural variations and functional implications*
**作者**:Pipe SW, et al.
**摘要**:通过质谱和功能实验比较多种重组FVIII产品(如Kogenate®、Advate®),发现不同细胞系(如CHO vs. BHK)生产的FVIII糖基化修饰差异可能影响其稳定性和体内活性,为优化生产工艺提供理论依据。
---
**注**:以上为示例性参考文献,实际引用时需通过PubMed、Web of Science等平台核实具体文献信息及原文内容。
F8 recombinant protein, also known as recombinant coagulation factor VIII (rFVIII), is a bioengineered therapeutic protein developed to treat hemophilia A, a genetic bleeding disorder caused by deficient or dysfunctional endogenous factor VIII. Hemophilia A affects approximately 1 in 5.000 males globally, leading to impaired blood clotting and spontaneous bleeding into joints, muscles, or organs.
Historically, factor VIII replacement therapy relied on plasma-derived products from human donors. However, these carried risks of pathogen transmission (e.g., HIV, hepatitis viruses) and inconsistent supply. The cloning of the F8 gene in 1984 enabled the development of recombinant FVIII, first approved by the FDA in 1992. This innovation eliminated reliance on human plasma, significantly improving safety and scalability.
Recombinant FVIII is produced using mammalian cell cultures (typically Chinese hamster ovary or baby hamster kidney cells) engineered to express the human F8 gene. The protein undergoes post-translational modifications to ensure functional similarity to natural factor VIII. Over decades, advancements have led to multiple generations of rFVIII products: first-generation versions contained human/animal protein stabilizers, while newer iterations use albumin-free formulations or chemical modifications to enhance stability and reduce immunogenicity.
Clinically, rFVIII is administered intravenously to prevent or treat bleeding episodes, enabling hemophilia A patients to maintain near-normal coagulation capacity. Prophylactic regimens have revolutionized care, reducing arthropathy and improving quality of life. Challenges persist, including the development of neutralizing antibodies (inhibitors) in ~30% of severe hemophilia patients, driving research into engineered FVIII variants with reduced immunogenicity.
Recent developments focus on extended half-life rFVIII products through PEGylation or Fc-fusion technologies, which decrease infusion frequency. Meanwhile, gene therapy approaches targeting durable F8 expression represent a potential paradigm shift toward functional cures. Despite these advances, accessibility remains uneven globally due to high costs, underscoring ongoing needs for affordable biosimilars and equitable distribution strategies.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×