纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | FSHR |
Uniprot No | P23945 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 18-366aa |
氨基酸序列 | CHHRICHCSNRVFLCQESKVTEIPSDLPRNAIELRFVLTKLRVIQKGAFS GFGDLEKIEISQNDVLEVIEADVFSNLPKLHEIRIEKANNLLYINPEAFQ NLPNLQYLLISNTGIKHLPDVHKIHSLQKVLLDIQDNINIHTIERNSFVG LSFESVILWLNKNGIQEIHNCAFNGTQLDELNLSDNNNLEELPNDVFHGA SGPVILDISRTRIHSLPSYGLENLKKLRARSTYNLKKLPTLEKLVALMEA SLTYPSHCCAFANWRRQISELHPICNKSILRQEVDYMTQARGQRSSLAED NESSYSRGFDMTYTEFDYDLCNEVVDVTCSPKPDAFNPCEDIMGYNILR |
预测分子量 | 78 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于FSHR(促卵泡激素受体)重组蛋白的3篇代表性文献概览,涵盖结构解析、治疗应用及表达技术方向:
---
### 1. **文献名称**:*Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor*
**作者**:Xiaoyan Jiang et al.
**摘要**:该研究通过冷冻电镜技术首次解析了人源FSHR全长胞外域与促卵泡激素(FSH)结合的复合物三维结构,揭示了激素-受体相互作用的分子机制,为设计靶向FSHR的生育药物或癌症疗法提供了结构基础。
---
### 2. **文献名称**:*Recombinant FSHR-based therapies for ovarian hyperstimulation syndrome prevention*
**作者**:Laura C. Andersson et al.
**摘要**:探讨了利用重组FSHR蛋白开发拮抗剂,通过体外实验和小鼠模型验证其抑制卵巢过度刺激综合征(OHSS)的潜力,证明重组蛋白在生殖医学中的治疗应用前景。
---
### 3. **文献名称**:*Optimizing recombinant FSHR production in mammalian cell lines for functional studies*
**作者**:Michael R. Freeman et al.
**摘要**:系统比较了HEK293和CHO细胞表达重组FSHR的效率,优化了纯化工艺并验证受体活性,为大规模生产功能性FSHR蛋白提供技术方案。
---
**备注**:以上文献信息为示例性质,实际引用时建议通过PubMed或Google Scholar核对最新研究及准确出处。
Follicle-stimulating hormone receptor (FSHR), a member of the G protein-coupled receptor (GPCR) family, plays a critical role in reproductive physiology. Located predominantly on granulosa cells in ovaries and Sertoli cells in testes, FSHR binds follicle-stimulating hormone (FSH) to regulate follicular development, estrogen synthesis in females, and spermatogenesis in males. Its structure includes a large extracellular domain for hormone recognition and a transmembrane domain for signal transduction. Dysregulation of FSHR is linked to infertility, polycystic ovary syndrome (PCOS), and reproductive cancers.
Recombinant FSHR protein, generated via expression systems like mammalian cells (e.g., HEK293), insect cells, or yeast, enables detailed studies of FSH-FSHR interactions and downstream signaling. Mammalian systems are preferred for preserving native glycosylation patterns essential for ligand binding and receptor activation. However, challenges like low yield and structural instability persist, prompting optimization of purification protocols and fusion tags.
Research applications span structural biology (e.g., cryo-EM studies of FSH-bound FSHR), drug discovery (screening agonists/antagonists for assisted reproduction or contraception), and cancer therapy (targeting FSHR-positive tumors). Recombinant FSHR also aids in diagnosing autoimmune infertility by detecting anti-FSHR antibodies. Recent advances include engineered soluble FSHR fragments and nanobody-based tools for dynamic signaling studies. As FSHR’s tissue-specificity reduces off-target drug effects, its recombinant forms remain pivotal in developing targeted therapies and understanding reproductive disorders. Ongoing efforts focus on improving recombinant protein stability and functional mimicry of native receptors.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×