纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | GaA |
Uniprot No | P10253 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-952aa |
氨基酸序列 | MGVRHPPCSHRLLAVCALVSLATAALLGHILLHDFLLVPRELSGSSPVLE ETHPAHQQGASRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQ EQCEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSSEMGYTA TLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDPANRRYEVPLETPRV HSRAPSPLYSVEFSEEPFGVIVHRQLDGRVLLNTTVAPLFFADQFLQLST SLPSQYITGLAEHLSPLMLSTSWTRITLWNRDLAPTPGANLYGSHPFYLA LEDGGSAHGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSV VQQYLDVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAHFPLDV QWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGGRRYMMIVDPAISSSG PAGSYRPYDEGLRRGVFITNETGQPLIGKVWPGSTAFPDFTNPTALAWWE DMVAEFHDQVPFDGMWIDMNEPSNFIRGSEDGCPNNELENPPYVPGVVGG TLQAATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISR STFAGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVGADVCGFL GNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEPYSFSEPAQQAMRKALT LRYALLPHLYTLFHQAHVAGETVARPLFLEFPKDSSTWTVDHQLLWGEAL LITPVLQAGKAEVTGYFPLGTWYDLQTVPIEALGSLPPPPAAPREPAIHS EGQWVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKG GEARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVTSEGAGLQ LQKVTVLGVATAPQQVLSNGVPVSNFTYSPDTKVLDICVSLLMGEQFLVS WC |
预测分子量 | 131 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于重组GAA(酸性α-葡萄糖苷酶)蛋白的3篇典型文献示例(注:文献标题和作者为模拟示例,具体研究内容参考真实领域进展):
---
1. **文献名称**: "High-level expression of recombinant human acid α-glucosidase in CHO cells for Pompe disease therapy"
**作者**: Byrne, B.J., et al.
**摘要**: 研究通过优化CHO细胞表达系统,实现了重组人GAA的高效分泌表达,并证明其酶活性可有效降解细胞内的糖原贮积,为庞贝病的酶替代疗法提供了生产基础。
2. **文献名称**: "Plant-derived recombinant human GAA shows therapeutic potential in a murine model of Pompe disease"
**作者**: Zhang, Y., et al.
**摘要**: 利用转基因植物系统(如玉米种子)生产重组GAA,通过动物实验验证其在庞贝病模型小鼠中能有效减少肌肉和心脏的糖原沉积,展示了植物表达系统的成本优势。
3. **文献名称**: "Improved glycosylation and activity of recombinant GAA produced in yeast"
**作者**: Kuo, C.L., et al.
**摘要**: 通过酵母表达系统对重组GAA进行糖基化工程改造,显著提高了酶的稳定性和靶向溶酶体的效率,为提升临床疗效提供了新策略。
---
**备注**:
- 真实文献可查询PubMed/Google Scholar,关键词如 **"recombinant GAA Pompe disease"** 或 **"acid alpha-glucosidase enzyme replacement therapy"**。
- 实际研究中,Genzyme公司(现Sanofi)的 **alglucosidase alfa**(商品名Myozyme®)是经典重组GAA药物,相关临床试验文献较多。
**Background of Recombinant GaA Protein**
Recombinant GaA (α-galactosidase A) protein is a therapeutic enzyme produced through recombinant DNA technology, primarily used to address genetic metabolic disorders. GaA is a lysosomal hydrolase responsible for breaking down globotriaosylceramide (Gb3) in cells. Deficiency of this enzyme due to mutations in the *GLA* gene leads to Fabry disease, an X-linked lysosomal storage disorder characterized by the accumulation of Gb3 in various tissues, resulting in progressive renal, cardiac, and cerebrovascular complications.
Traditional treatments for Fabry disease were limited to symptomatic management until the development of enzyme replacement therapy (ERT). Recombinant GaA, biosynthesized using engineered mammalian cell lines (e.g., Chinese hamster ovary cells), mimics the natural human enzyme. The production involves inserting the human *GLA* gene into host cells, followed by purification to ensure clinical-grade quality. Post-translational modifications, such as glycosylation, are critical for enzyme stability and uptake into target cells via mannose-6-phosphate receptors.
The first FDA-approved recombinant GaA, agalsidase beta (Fabrazyme®), demonstrated efficacy in reducing Gb3 deposits and alleviating symptoms. However, challenges like immunogenicity, short half-life, and high production costs persist. Ongoing research focuses on improving enzyme delivery (e.g., PEGylation, nanoparticle carriers) and developing next-generation therapies, including substrate reduction therapy and gene editing (e.g., CRISPR).
Beyond Fabry disease, recombinant GaA has potential applications in biomanufacturing and research, such as studying glycosphingolipid metabolism. Its development underscores the convergence of genetic engineering and precision medicine, offering a model for treating rare genetic disorders through targeted protein therapeutics.
×