纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | rT3 |
Uniprot No | P51398 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 19-398aa |
氨基酸序列 | GR FLHMGTQARQ SIAAHLDNQV PVESPRAISR TNENDPAKHG DQHEGQHYNI SPQDLETVFP HGLPPRFVMQ VKTFSEACLM VRKPALELLH YLKNTSFAYP AIRYLLYGEK GTGKTLSLCH VIHFCAKQDW LILHIPDAHL WVKNCRDLLQ SSYNKQRFDQ PLEASTWLKN FKTTNERFLN QIKVQEKYVW NKRESTEKGS PLGEVVEQGI TRVRNATDAV GIVLKELKRQ SSLGMFHLLV AVDGINALWG RTTLKREDKS PIAPEELALV HNLRKMMKND WHGGAIVSAL SQTGSLFKPR KAYLPQELLG KEGFDALDPF IPILVSNYNP KEFESCIQYY LENNWLQHEK APTEEGKKEL LFLSNANPSL LERHCAYL |
预测分子量 | 45,5 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于rT3(反三碘甲状腺原氨酸)重组蛋白研究的示例参考文献(注:以下内容为模拟示例,非真实文献,建议通过学术数据库查询具体文献):
1. **《重组反三碘甲状腺原氨酸(rT3)的制备及其在甲状腺功能减退模型中的应用》**
- 作者:Smith A, et al.
- 摘要:研究报道了一种通过大肠杆菌表达系统高效制备重组rT3蛋白的方法,并验证其在甲状腺功能减退小鼠模型中对代谢标志物的调节作用。
2. **《rT3重组蛋白的晶体结构解析与激素受体结合机制》**
- 作者:Lee C, et al.
- 摘要:通过X射线晶体学解析了重组rT3的三维结构,揭示了其与甲状腺激素受体β(TRβ)的结合模式,为甲状腺激素信号通路研究提供结构基础。
3. **《重组rT3的体外生物学活性评估及其临床检测方法开发》**
- 作者:Zhang Y, et al.
- 摘要:利用重组rT3蛋白建立了一种高灵敏度ELISA检测技术,分析了其在甲状腺疾病患者血清中的水平与疾病严重程度的相关性。
4. **《重组rT3蛋白在非甲状腺疾病综合征(NTIS)中的功能研究》**
- 作者:Garcia R, et al.
- 摘要:探讨了重组rT3在细胞模型中对炎症因子和能量代谢的影响,提出其在NTIS病理过程中的潜在调控作用。
建议通过PubMed、Web of Science等平台,以关键词“recombinant reverse T3”或“rT3 protein”检索最新文献以获取真实数据。
**Background of Recombinant Reverse Triiodothyronine (rT3)**
Reverse triiodothyronine (rT3) is an endogenous isomer of triiodothyronine (T3), a critical thyroid hormone involved in metabolic regulation. Unlike T3. which is biologically active, rT3 is considered an inactive metabolite formed via the inner-ring deiodination of thyroxine (T4) by deiodinase enzymes, primarily under conditions of physiological stress, illness, or altered thyroid function. While rT3 lacks classical thyroid hormone activity, its levels serve as a biomarker in evaluating thyroid dysfunction, non-thyroidal illnesses, and metabolic disorders such as chronic fatigue syndrome or critical illness.
Recombinant rT3 (rT3 recombinant protein) is synthesized using biotechnological methods, typically involving the expression of modified genes in bacterial or mammalian cell systems. This allows for large-scale production of highly pure and consistent rT3 molecules, overcoming limitations associated with isolating the protein from natural sources. Recombinant technology ensures precise control over post-translational modifications, enhancing its utility in research and diagnostics.
In research, recombinant rT3 is employed to study thyroid hormone metabolism, cellular uptake mechanisms, and the role of rT3 in modulating T3/T4 balance under pathological conditions. It also aids in developing diagnostic assays to distinguish between thyroid disorders and non-thyroidal illnesses. Clinically, rT3 measurements help assess euthyroid sick syndrome, where abnormal rT3 levels correlate with systemic illness severity.
Overall, recombinant rT3 bridges gaps in understanding thyroid hormone dynamics, offering a standardized tool for both experimental and clinical applications in endocrinology and metabolic disease research.
×