纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | b3GALT2 |
Uniprot No | O43825 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-422aa |
氨基酸序列 | MLQWRRRHCCFAKMTWNAKRSLFRTHLIGVLSLVFLFAMFLFFNHHDWLPGRAGFKENPVTYTFRGFRSTKSETNHSSLRNIWKETVPQTLRPQTATNSNNTDLSPQGVTGLENTLSANGSIYNEKGTGHPNSYHFKYIINEPEKCQEKSPFLILLIAAEPGQIEARRAIRQTWGNESLAPGIQITRIFLLGLSIKLNGYLQRAILEESRQYHDIIQQEYLDTYYNLTIKTLMGMNWVATYCPHIPYVMKTDSDMFVNTEYLINKLLKPDLPPRHNYFTGYLMRGYAPNRNKDSKWYMPPDLYPSERYPVFCSGTGYVFSGDLAEKIFKVSLGIRRLHLEDVYVGICLAKLRIDPVPPPNEFVFNHWRVSYSSCKYSHLITSHQFQPSELIKYWNHLQQNKHNACANAAKEKAGRYRHRKLH |
预测分子量 | 49,2 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于b3GALT2重组蛋白的3篇参考文献示例(注:文献信息为示例性概括,具体内容需通过学术数据库验证):
1. **文献名称**:*"Functional characterization of human β3GalT2 (B3GALT2) enzyme in cancer cell migration"*
**作者**:Smith A, et al.
**摘要**:研究通过重组表达B3GALT2蛋白,发现其在多种癌细胞中高表达,并通过调控细胞表面糖基化修饰促进肿瘤细胞迁移和侵袭,提示其作为潜在癌症治疗靶点。
2. **文献名称**:*"Enzymatic properties and substrate specificity of recombinant human B3GALT2"*
**作者**:Zhang L, et al.
**摘要**:利用大肠杆菌系统重组表达B3GALT2蛋白,分析其酶学特性,证实其对半乳糖基化底物的特异性,并揭示了其参与特定糖链合成的分子机制。
3. **文献名称**:*"B3GALT2 deficiency disrupts glycosphingolipid biosynthesis and causes neurological disorders"*
**作者**:Wang Y, et al.
**摘要**:通过构建重组B3GALT2蛋白模型,研究其与遗传性神经疾病的关系,发现酶活性缺失导致糖鞘脂合成异常,进而引发小鼠模型中的神经系统功能障碍。
建议通过PubMed或Google Scholar以“B3GALT2 recombinant protein”或“β3GalT2 expression”为关键词检索最新文献,并优先选择近5年发表的实验研究。
β3GALT2 (β-1.3-galactosyltransferase 2) is a key enzyme in glycosylation, a post-translational modification critical for protein stability, cellular communication, and immune recognition. It belongs to the β3-galactosyltransferase family and catalyzes the transfer of galactose from UDP-galactose to acceptor substrates, particularly in the biosynthesis of core 1 O-glycans (Galβ1-3GalNAc) on glycoproteins and glycolipids. This enzyme plays a role in forming structural motifs essential for cell adhesion, signaling, and pathogen interactions.
Recombinant β3GALT2 is produced using genetic engineering techniques, often expressed in mammalian (e.g., HEK293. CHO) or insect cell systems to ensure proper folding and glycosylation. Its recombinant form enables detailed study of enzymatic mechanisms, substrate specificity, and interactions with other glycosyltransferases. Research focuses on its involvement in congenital disorders of glycosylation (CDGs), cancer metastasis, and immune dysregulation. For example, defective β3GALT2 activity is linked to altered mucin-type O-glycosylation, contributing to diseases like Tn syndrome. In cancer, aberrant O-glycans promote tumor cell invasion and immune evasion, making β3GALT2 a potential therapeutic target.
Additionally, recombinant β3GALT2 is used in biomanufacturing to engineer glycoproteins with tailored glycoforms for improved pharmacokinetics or reduced immunogenicity in biologics. Challenges include optimizing expression yields and maintaining enzymatic activity in vitro. Ongoing studies aim to unravel its regulatory networks and exploit its biotechnological applications in drug development and synthetic glycobiology. Understanding β3GALT2’s function advances both basic glycoscience and translational efforts to modulate glycosylation in disease contexts.
×