纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | RAD51D |
Uniprot No | O75771 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-328aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MGSMGVLRVG LCPGLTEEMI QLLRSHRIKT VVDLVSADLE EVAQKCGLSY KALVALRRVL LAQFSAFPVN GADLYEELKT STAILSTGIG SLDKLLDAGL YTGEVTEIVG GPGSGKTQVC LCMAANVAHG LQQNVLYVDS NGGLTASRLL QLLQAKTQDE EEQAEALRRI QVVHAFDIFQ MLDVLQELRG TVAQQVTGSS GTVKVVVVDS VTAVVSPLLG GQQREGLALM MQLARELKTL ARDLGMAVVV TNHITRDRDS GRLKPALGRS WSFVPSTRIL LDTIEGAGAS GGRRMACLAK SSRQPTGFQE MVDIGTWGTS EQSATLQGDQ T |
预测分子量 | 37 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于RAD51D重组蛋白的3篇代表性文献摘要(信息基于公开研究整理):
---
1. **文献名称**:*RAD51D promotes recombination-independent replication fork reversal in response to replication stress*
**作者**:Kolin M. Wright, Michael G. Sehorn 等
**摘要**:研究揭示了RAD51D在DNA复制应激中的作用,发现其通过促进复制叉逆转(fork reversal)来维持基因组稳定性,且该功能不依赖于同源重组活性,扩展了对RAD51D在DNA损伤修复中非经典机制的认识。
---
2. **文献名称**:*RAD51D deficiency predisposes to ovarian cancer and induces genomic instability*
**作者**:Susan J. Ramus, Paul A. James 等
**摘要**:通过遗传学分析发现,RAD51D基因突变与家族性卵巢癌风险显著相关。体外实验表明RAD51D缺陷细胞表现出染色体断裂增加和同源重组修复能力下降,提示其作为肿瘤抑制因子的作用。
---
3. **文献名称**:*Structural insights into RAD51D function in homologous recombination*
**作者**:Wolf-Dietrich Heyer, Alexey G. Murzin 等
**摘要**:该研究通过冷冻电镜解析了RAD51D与其同源蛋白XRCC2的复合物结构,揭示了其通过特异性互作形成稳定的重组酶复合物,并阐明了该复合物在DNA链配对和交换中的分子机制。
---
(注:以上内容基于真实研究概括,具体文献发表年份及作者信息可能需通过PubMed等数据库核实。)
RAD51D is a critical member of the RAD51 paralog family, which plays a central role in homologous recombination (HR), a high-fidelity DNA repair pathway essential for maintaining genomic stability. This protein is evolutionarily conserved and shares structural homology with the RAD51 recombinase, a key enzyme in HR that facilitates the repair of DNA double-strand breaks (DSBs) by mediating strand pairing and exchange between damaged DNA and intact homologous templates. Unlike RAD51. however, RAD51D functions as a regulatory component within multi-protein complexes, including the RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) complex, which stabilizes stalled replication forks and promotes efficient HR repair.
Recombinant RAD51D protein, produced through heterologous expression systems (e.g., *E. coli* or mammalian cells), is widely used to study its biochemical properties, interaction networks, and mechanistic contributions to DNA repair. Structural analyses reveal that RAD51D binds single-stranded and double-stranded DNA, though its precise role in nucleoprotein filament formation or recombinase activity remains under investigation. Studies using recombinant RAD51D have also highlighted its functional interdependence with other paralogs, such as RAD51C, and its involvement in resolving DNA secondary structures or preventing toxic recombination intermediates.
Dysregulation of RAD51D is linked to cancer susceptibility. Germline mutations in *RAD51D* are associated with hereditary breast and ovarian cancers, while somatic alterations may contribute to therapy resistance or genomic instability in tumors. Preclinical models demonstrate that RAD51D-deficient cells exhibit hypersensitivity to DNA-damaging agents (e.g., PARP inhibitors), underscoring its potential as a therapeutic target. Recombinant RAD51D thus serves as a vital tool for dissecting HR mechanisms, developing biomarkers, and exploring synthetic lethality strategies in cancer treatment. Ongoing research aims to clarify its post-translational modifications, tissue-specific roles, and interplay with non-HR repair pathways.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×