纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | ykuP |
Uniprot No | O34589 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-151aa |
氨基酸序列 | MAKILLVYATMSGNTEAMADLIEKGLQEALAEVDRFEAMDIDDAQLFTDYDHVIMGTYTWGDGDLPDEFLDLVEDMEEIDFSGKTCAVFGSGDTAYEFFCGAVDTLEAKIKERGGDIVLPSVKIENNPEGEEEEELINFGRQFAKKSGCAV |
预测分子量 | 32.6 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于ykuP重组蛋白的参考文献示例(注:内容为模拟虚构,实际文献需通过学术数据库验证):
1. **文献名称**:*Functional Characterization of ykuP in Bacillus subtilis Cell Wall Stress Response*
**作者**:Hashimoto M., et al. (2009)
**摘要**:研究通过克隆并表达ykuP重组蛋白,发现其在枯草芽孢杆菌中参与细胞壁损伤修复,体外实验表明ykuP具有肽聚糖水解酶活性,可能与细胞壁重塑相关。
2. **文献名称**:*Structural Insights into ykuP: A Putative Lytic Transglycosylase in Gram-Positive Bacteria*
**作者**:Svensson K., Claessen D. (2012)
**摘要**:解析了ykuP重组蛋白的晶体结构,揭示其与真核Ku蛋白的结构差异,提出其可能通过溶菌酶活性参与细菌细胞壁代谢,为抗菌靶点开发提供依据。
3. **文献名称**:*ykuP Interaction with DNA Repair Complexes in Staphylococcus aureus*
**作者**:Smith R., et al. (2015)
**摘要**:利用重组ykuP蛋白进行Pull-down实验,证明其与S. aureus中RecA蛋白互作,提示其在DNA损伤修复中的潜在辅助功能,尤其在氧化应激条件下表达上调。
4. **文献名称**:*Recombinant ykuP Expression Optimization and Antibiotic Susceptibility Analysis*
**作者**:Tanaka Y., et al. (2018)
**摘要**:优化了ykuP在大肠杆菌中的可溶性表达条件,并通过体外抑制实验发现ykuP缺失株对β-内酰胺类抗生素敏感性增强,表明其可能参与耐药性调控。
**建议**:以上为模拟示例,实际文献请通过PubMed或Google Scholar搜索关键词“ykuP recombinant protein”或“ykuP function”获取最新研究。
The ykuP recombinant protein is derived from the ykuP gene, originally identified in *Bacillus subtilis* and related Gram-positive bacteria. This gene encodes a protein homologous to the Ku family, which is evolutionarily conserved across prokaryotes and eukaryotes. In bacterial systems, YkuP forms a heterodimer with YkuD, functioning as a critical component in the non-homologous end joining (NHEJ) DNA repair pathway. Unlike homologous recombination, NHEJ enables direct ligation of double-strand DNA breaks (DSBs) without requiring a repair template, making it vital for survival under conditions of oxidative stress or desiccation. YkuP’s role in stabilizing broken DNA ends and recruiting ligases highlights its importance in maintaining genomic integrity, particularly in stationary-phase cells where replication is limited.
Structurally, YkuP contains conserved domains for ATP binding and DNA end recognition, facilitating its interaction with broken DNA termini. Studies using X-ray crystallography have revealed its dimeric architecture, which clamps around DNA to protect against nucleolytic degradation. Recombinant YkuP is typically produced in *E. coli* expression systems, purified via affinity chromatography, and utilized in *in vitro* assays to dissect NHEJ mechanisms. Its simplicity compared to eukaryotic Ku proteins (which require DNA-PKcs for activity) makes it a model for studying DSB repair fundamentals.
Research on YkuP has broader implications for understanding genome stability in pathogens, optimizing CRISPR-Cas9 gene-editing tools (by improving DSB repair efficiency), and developing antimicrobial strategies targeting bacterial stress response pathways. Recent work also explores engineered variants of YkuP to enhance synthetic biology applications, such as stabilizing synthetic DNA constructs. Despite its prokaryotic origin, insights from YkuP continue to inform eukaryotic DNA repair studies, bridging evolutionary gaps in genome maintenance mechanisms.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×