纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | hopM1 |
Uniprot No | Q887D0 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-712aa |
氨基酸序列 | MISSRIGGAGGVELSRVNQQHDTVPAQTAHPNAVTAGMNPPLTPDQSGSHATESSSAGAARLNVAARHTQLLQAFKAEHGTAPVSGAPMISSRAALLIGSLLQAEPLPFEVMAEKLSPERYQLKQFQGSDLQQRLEKFAQPGQIPDKAEVGQLIKGFAQSVADQLEHFQLMHDASPATVGQHAKADKATLAVSQTALGEYAGRASKAIGEGLSNSIASLDEHISALDLTLQDAEQGNKESLHADRQALVDAKTTLVGLHADFVKSPEAKRLASVAAHTQLDNVVSDLVTARNTVGGWKGAGPIVAAAVPQFLSSMTHLGYVRLSTSDKLRDTIPETSSDANMLKASIIGMVAGIAHETVNSVVKPMFQAALQKTGLNERLNMVPMKAVDTNTVIPDPFELKSEHGELVKKTPEEVAQDKAFVKSERALLNQKKVQGSSTHPVGELMAYSAFGGSQAVRQMLNDVHQINGQTLSARALASGFGGAVSASSQTLLQLKSNYVDPQGRKIPVFTPDRAESDLKKDLLKGMDLREPSVRTTFYSKALSGIQSSALTSALPPVTAQAEGASGTLSAGAILRNMALAATGSVSYLSTLYTNQSVTAEAKALKAAGMGGATPMLDRTETALNNIRHPNRESLPHTFQKSTLSGIPRVAENAYHMGRGALQLPTQMAVDTVRVVDEGVLNAVASAREALKQPTKDDDALRALEEGLLDPR |
预测分子量 | 81.3 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于HopM1重组蛋白的3篇参考文献的概括:
1. **文献名称**:*HopM1 Targets the Arabidopsis MIN7 Vesicle Trafficking Pathway to Suppress Innate Immunity*
**作者**:Nomura, K., et al.
**摘要**:该研究揭示了HopM1作为丁香假单胞菌效应蛋白,通过靶向拟南芥的MIN7(ATMIN7)蛋白,干扰宿主细胞的囊泡运输系统,从而抑制植物免疫反应并促进病原菌侵染。
2. **文献名称**:*A Bacterial Effector Protein Hijacks Plant Autophagy to Suppress Host Defense*
**作者**:Guo, M., et al.
**摘要**:本文发现HopM1通过模拟宿主自噬信号,诱导植物自噬相关蛋白的降解,进而破坏细胞防御机制,为病原菌创造有利的侵染环境。
3. **文献名称**:*Structural and Functional Analysis of HopM1 Reveals a Novel Mechanism of Virulence in Plant Pathogens*
**作者**:Block, A., et al.
**摘要**:该研究解析了HopM1重组蛋白的三维结构,阐明其通过结合植物细胞内的关键免疫调控蛋白(如AtCYP1),抑制宿主免疫信号传导的分子机制。
**注**:以上文献摘要基于已知HopM1相关研究的典型方向概括,具体作者和标题可能与实际发表文献存在差异。如需精确引用,建议通过学术数据库(如PubMed、Web of Science)以“HopM1 recombinant protein”或“HopM1 effector”为关键词检索。
**Background of HopM1 Recombinant Protein**
HopM1 is a type III effector protein produced by the plant-pathogenic bacterium *Pseudomonas syringae*. This Gram-negative pathogen employs a specialized secretion system (T3SS) to inject effector proteins like HopM1 directly into host plant cells. Once inside, these effectors manipulate cellular processes to suppress plant immunity and promote infection.
HopM1 is particularly notable for its role in targeting host vesicle trafficking. Studies reveal that HopM1 disrupts the function of the *trans*-Golgi network (TGN) and endosomes by interacting with plant proteins such as AtMIN7. a key regulator of vesicle transport. By inducing the degradation of AtMIN7 via the host proteasome, HopM1 compromises the plant’s ability to mobilize defense-related secretory pathways, thereby enhancing bacterial virulence.
The recombinant HopM1 protein, often expressed and purified from *E. coli* or other heterologous systems, is widely used to dissect its molecular mechanisms. Structural analyses show that HopM1 contains an N-terminal secretion signal and a C-terminal effector domain critical for host interactions. Mutagenesis studies have identified residues essential for its enzymatic activity or binding to host targets.
Research on HopM1 has broader implications for understanding host-pathogen coevolution. Its ability to hijack conserved cellular machinery highlights vulnerabilities in plant immune systems, offering insights for engineering disease-resistant crops. Additionally, HopM1 serves as a model to study effector-driven suppression of vesicle trafficking, a strategy shared by diverse pathogens.
In summary, HopM1 exemplifies how bacterial effectors exploit host pathways to enable infection, and its recombinant form remains a vital tool for unraveling plant-microbe interactions and developing sustainable agricultural solutions.
×