纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | viaA |
Uniprot No | P0ADN0 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-483aa |
氨基酸序列 | MLTLDTLNVM LAVSEEGLIE EMIIALLASP QLAVFFEKFP RLKAAITDDV PRWREALRSR LKDARVPPEL TEEVMCYQQS QLLSTPQFIV QLPQILDLLH RLNSPWAEQA RQLVDANSTI TSALHTLFLQ RWRLSLIVQA TTLNQQLLEE EREQLLSEVQ ERMTLSGQLE PILADNNTAA GRLWDMSAGQ LKRGDYQLIV KYGEFLNEQP ELKRLAEQLG RSREAKSIPR NDAQMETFRT MVREPATVPE QVDGLQQSDD ILRLLPPELA TLGITELEYE FYRRLVEKQL LTYRLHGESW REKVIERPVV HKDYDEQPRG PFIVCVDTSG SMGGFNEQCA KAFCLALMRI ALAENRRCYI MLFSTEIVRY ELSGPQGIEQ AIRFLSQQFR GGTDLASCFR AIMERLQSRE WFDADAVVIS DFIAQRLPDD VTSKVKELQR VHQHRFHAVA MSAHGKPGIM RIFDHIWRFD TGMRSRLLRR WRR |
预测分子量 | 55,9 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于viaA重组蛋白的虚构参考文献示例(仅供格式参考):
1. **《Role of Recombinant ViaA in Vibrio cholerae Pathogenesis》**
- 作者:Zhang et al. (2020)
- 摘要:研究通过重组表达霍乱弧菌viaA蛋白,证实其调控细菌生物膜形成及宿主细胞黏附的功能,并揭示其与毒素分泌通路的关联。
2. **《Expression and Structural Characterization of ViaA Recombinant Protein》**
- 作者:Smith et al. (2021)
- 摘要:利用大肠杆菌系统高效表达viaA重组蛋白,经纯化后通过X射线晶体学解析其三维结构,为靶向药物设计提供依据。
3. **《ViaA-Mediated Immune Evasion in Bacterial Infections》**
- 作者:Wang & Li (2022)
- 摘要:证明viaA重组蛋白通过抑制宿主TLR4信号通路削弱先天免疫应答,提示其在病原体免疫逃逸中的关键作用。
4. **《Development of a ViaA-Based Subunit Vaccine Against Enteric Pathogens》**
- 作者:García et al. (2023)
- 摘要:基于重组viaA蛋白设计的新型疫苗在小鼠模型中诱导显著IgG抗体反应,为肠道致病菌防控提供潜在策略。
(注:以上内容为模拟示例,实际文献需通过数据库检索获取。)
**Background of VIA Recombinant Protein**
Recombinant protein technology has revolutionized biomedical research and therapeutic development by enabling the production of specific proteins through genetically engineered systems. VIA recombinant protein, a product of this technology, is typically designed to mimic a target antigen or functional protein derived from pathogens, human cells, or other biological sources. Its development often stems from the need to study protein function, create diagnostic tools, or engineer vaccines and therapies.
The production of VIA recombinant protein involves cloning the gene encoding the target protein into expression vectors, which are then introduced into host systems such as *E. coli*, yeast, or mammalian cells. These systems synthesize the protein, which is subsequently purified using techniques like affinity chromatography. For proteins requiring post-translational modifications (e.g., glycosylation), mammalian cell lines are often preferred to ensure proper folding and functionality.
VIA recombinant proteins are rigorously characterized for purity, stability, and bioactivity. Analytical methods such as SDS-PAGE, Western blotting, and mass spectrometry confirm structural integrity, while functional assays validate biological activity. This quality control is critical for applications in drug discovery, where these proteins may serve as therapeutic agents (e.g., monoclonal antibodies, enzyme replacements) or vaccine components. For instance, viral or bacterial antigens produced as recombinant proteins are widely used in subunit vaccines to elicit targeted immune responses without exposing recipients to live pathogens.
In research, VIA recombinant proteins facilitate studies on protein-protein interactions, signaling pathways, and structural biology. They also underpin diagnostic kits for detecting diseases by identifying antibodies or antigens in patient samples. Challenges in their development include optimizing expression yields, minimizing aggregation, and ensuring scalability for industrial production. Advances in synthetic biology and AI-driven protein design continue to enhance the efficiency and scope of recombinant protein applications, positioning VIA and similar proteins as indispensable tools in modern medicine and biotechnology.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×