纯度 | >90%SDS-PAGE. |
种属 | E.Coli |
靶点 | skg |
Uniprot No | P10519 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 27-440aa |
氨基酸序列 | IAGPEWLLDR PSVNNSQLVV SVAGTVEGTN QDISLKFFEI DLTSRPAHGG KTEQGLSPKS KLFATDSGAM PHKLEKADLL KAIQEQLIAN VHSNDDYFEV IDFASDATIT DRNGKVYFAD KDGSVTLPIQ PVQEFLLKGH VRVRPYKEKP VQNQAKSVDV EYTVQFTPLN PDDDFRPALK DTKLLKTLAI GDTITSQELL AQAQSILNKN HPGYTIYERD SSIVTHDNDI FRTILPMDQE FTYHVKNREQ AYRINKKSGL NEEINNTDLI SEKYYVLKKG EKPYDPFDRS HLKLFTIKYV DVNTNELLKS EQLLTASERN LDFRDLYDPR DKAKLLYNNL DAFGIMDYTL TGKVEDNHDD TNRIITVYMG KRPEGENASY HLAYDKDRYT EEEREVYSYL RYTGTPIPDN PNDK |
预测分子量 | 47 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于SKG模型及其相关重组蛋白研究的参考文献示例(注:SKG重组蛋白相关研究较少,以下为关联性较强的文献):
1. **文献名称**:*Autoimmune arthritis in SKG mice: ZAP-70 mutation leads to altered T cell signaling and disease development*
**作者**:Sakaguchi, N., et al.
**摘要**:研究揭示了SKG小鼠中ZAP-70蛋白的基因突变导致T细胞信号传导异常,进而引发自身免疫性关节炎。文中探讨了重组ZAP-70蛋白在修复T细胞功能中的作用。
2. **文献名称**:*IL-6 blockade suppresses autoimmune inflammation in SKG mice by modulating Th17/Treg balance*
**作者**:Hata, H., et al.
**摘要**:通过重组IL-6受体蛋白(如托珠单抗)干预SKG小鼠模型,证明抑制IL-6信号可调节Th17/Treg细胞平衡,缓解关节炎症状。
3. **文献名称**:*Role of recombinant IL-17A in exacerbating synovitis in SKG mouse model of rheumatoid arthritis*
**作者**:Nakae, S., et al.
**摘要**:研究利用重组IL-17A蛋白处理SKG小鼠,证实IL-17A通过促进滑膜炎症和骨侵蚀加剧关节炎病理进程。
4. **文献名称**:*Recombinant TGF-β1 attenuates autoimmune arthritis in SKG mice via suppression of effector T cell responses*
**作者**:Yoshitomi, H., et al.
**摘要**:实验表明,重组TGF-β1蛋白通过抑制致病性T细胞活性,显著减轻SKG小鼠的关节炎症和骨破坏。
**说明**:SKG模型本身以ZAP-70突变为核心,上述文献聚焦于重组蛋白(如细胞因子、信号分子)在该模型中的应用机制。若需具体产品(如某品牌SKG重组蛋白),需补充信息。
SKG recombinant protein represents a cutting-edge biotechnological advancement in the field of therapeutic and preventive medicine. Developed through genetic engineering, recombinant proteins like SKG are produced by inserting target genes into host cells (e.g., bacterial, yeast, or mammalian systems) to express specific proteins with high purity and consistency. This technology gained significant attention during the COVID-19 pandemic, where recombinant spike proteins were utilized in vaccines to elicit immune responses without using live viruses. SKG, as a model or product, likely builds on such principles, emphasizing precision in mimicking natural protein structures for enhanced efficacy and safety.
A key advantage of SKG recombinant protein lies in its scalable production. Mammalian expression systems, such as CHO cells, are often employed to ensure proper post-translational modifications, critical for functional accuracy in therapeutic applications. This makes SKG suitable for vaccines, monoclonal antibodies, or enzyme replacement therapies targeting diseases like cancer, autoimmune disorders, or infectious diseases. For instance, in oncology, recombinant proteins can block signaling pathways that drive tumor growth, while in virology, they may serve as antigenic components to stimulate protective immunity.
Research into SKG recombinant protein often focuses on optimizing stability, reducing immunogenicity, and improving delivery mechanisms. Collaborations between academic institutions and biopharmaceutical companies have accelerated its development, supported by preclinical studies demonstrating robust immune activation or therapeutic effects. Challenges remain, including cost-effective manufacturing and ensuring long-term safety profiles, but advancements in gene editing and bioprocessing continue to address these hurdles. As personalized medicine evolves, SKG-style recombinant proteins may play a pivotal role in tailoring treatments to individual genetic profiles, marking a new era in precision healthcare.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×