纯度 | >85%SDS-PAGE. |
种属 | Human |
靶点 | QKI |
Uniprot No | Q96PU8 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-341aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MGSMVGEMET KEKPKPTPDY LMQLMNDKKL MSSLPNFCGI FNHLERLLDE EISRVRKDMY NDTLNGSTEK RSAELPDAVG PIVQLQEKLY VPVKEYPDFN FVGRILGPRG LTAKQLEAET GCKIMVRGKG SMRDKKKEEQ NRGKPNWEHL NEDLHVLITV EDAQNRAEIK LKRAVEEVKK LLVPAAEGED SLKKMQLMEL AILNGTYRDA NIKSPALAFS LAATAQAAPR IITGPAPVLP PAALRTPTPA GPTIMPLIRQ IQTAVMPNGT PHPTAAIVPP GPEAGLIYTP YEYPYTLAPA TSILEYPIEP SGVLGAVATK VRRHDMRVHP YQRIVTADRA ATGN |
预测分子量 | 40 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于QKI重组蛋白的3篇参考文献示例(基于公开研究内容整合,非真实文献):
---
1. **文献名称**:*QKI蛋白重组表达及其在RNA结合调控中的功能分析*
**作者**:Wu, X. et al.
**摘要**:研究通过大肠杆菌系统成功表达并纯化重组人源QKI-5蛋白,体外实验证实其选择性结合靶mRNA的特定序列,调控RNA稳定性及剪接,揭示了QKI在转录后调控中的分子机制。
2. **文献名称**:*QKI重组异构体在胶质瘤细胞迁移中的差异作用*
**作者**:Zhao, Y. et al.
**摘要**:构建QKI-6/7重组蛋白并转染胶质瘤细胞,发现QKI-6通过抑制MAPK信号通路显著降低细胞迁移能力,为QKI异构体在癌症中的功能差异提供了实验依据。
3. **文献名称**:*STAR家族蛋白QKI的晶体结构解析及RNA结合模式研究*
**作者**:Chen, L. et al.
**摘要**:利用重组QKI蛋白的结晶结构分析,揭示了其KH结构域与RNA结合的精确位点及动态构象变化,为靶向QKI的RNA调控网络设计提供结构基础。
---
(注:以上文献为示例性质,实际研究需参考具体发表的论文。)
The Quaking (QKI) protein, encoded by the QKI gene, is a member of the STAR (signal transduction and activation of RNA) family of RNA-binding proteins. It plays critical roles in post-transcriptional regulation, including mRNA splicing, stability, transport, and translation. QKI is essential for cellular differentiation, myelination, and embryonic development, particularly in the nervous and vascular systems. Structurally, QKI contains a conserved RNA-binding domain (QUA1 and QUA2) and a tyrosine-rich C-terminal region, enabling interactions with specific RNA motifs (e.g., QKI response elements) and protein partners.
Alternative splicing generates three major isoforms—QKI-5. QKI-6. and QKI-7—which differ in subcellular localization and function. For instance, QKI-5 localizes to the nucleus and cytoplasm, while QKI-6/7 are predominantly cytoplasmic. Dysregulation of QKI is linked to neurodevelopmental disorders (e.g., schizophrenia), cancers (e.g., glioblastoma, lung cancer), and cardiovascular diseases, underscoring its role in maintaining cellular homeostasis.
Recombinant QKI proteins are engineered using expression systems (e.g., E. coli, mammalian cells) to study molecular mechanisms or develop therapeutics. These proteins retain RNA-binding activity and are used in vitro to map RNA-protein interactions, screen small-molecule inhibitors, or model disease pathways. Challenges include preserving native conformational states and post-translational modifications (e.g., phosphorylation), which influence function. Current research focuses on leveraging recombinant QKI for RNA-targeted therapies or as biomarkers, highlighting its potential in precision medicine.
×