纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | PCA |
Uniprot No | O60711 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-386aa |
氨基酸序列 | MEELDALLEELERSTLQDSDEYSNPAPLPLDQHSRKETNLDETSEILSIQDNTSPLPAQLVYTTNIQELNVYSEAQEPKESPPPSKTSAAAQLDELMAHLTEMQAKVAVRADAGKKHLPDKQDHKASLDSMLGGLEQELQDLGIATVPKGHCASCQKPIAGKVIHALGQSWHPEHFVCTHCKEEIGSSPFFERSGLAYCPNDYHQLFSPRCAYCAAPILDKVLTAMNQTWHPEHFFCSHCGEVFGAEGFHEKDKKPYCRKDFLAMFSPKCGGCNRPVLENYLSAMDTVWHPECFVCGDCFTSFSTGSFFELDGRPFCELHYHHRRGTLCHGCGQPITGRCISAMGYKFHPEHFVCAFCLTQLSKGIFREQNDKTYCQPCFNKLFPL |
预测分子量 | 43,3 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是与PCA(Protein Complementation Assay)重组蛋白相关的3篇文献示例,供参考:
---
1. **文献名称**:*Detection of protein-protein interactions in live cells using a split GFP reconstitution assay*
**作者**:Michnick, S.W. 等
**摘要**:提出一种基于绿色荧光蛋白(GFP)分割重组技术的PCA方法,通过重组两个非功能性GFP片段(分别融合目标蛋白),在活细胞中实时监测蛋白相互作用,并验证其在动态生物学过程中的应用。
---
2. **文献名称**:*A high-throughput screening strategy for drug discovery using PCA-based protein-fragment complementation*
**作者**:Ghosh, I. 等
**摘要**:开发了一种基于PCA的高通量药物筛选平台,利用重组蛋白的互补活性恢复机制(如β-内酰胺酶分割系统),快速检测小分子化合物对特定蛋白相互作用的抑制或激活效应。
---
3. **文献名称**:*Structural and functional analysis of a recombinant PCAF protein for epigenetic studies*
**作者**:Kobayashi, T. 和 Shimizu, H.
**摘要**:报道了一种重组PCAF(p300/CBP-associated factor)蛋白的制备方法,通过优化表达系统和纯化策略获得高活性蛋白,并解析其乙酰转移酶结构域的功能机制,为表观遗传调控研究提供工具。
---
注:以上为示例性文献,实际引用时建议通过PubMed或Web of Science核对具体文献信息。若需扩展,可补充具体应用方向(如酶工程、药物靶点验证等)。
Principal Component Analysis (PCA) recombinant proteins are engineered biomolecules designed to leverage PCA-based strategies for studying protein interactions, cellular processes, or diagnostic applications. PCA, in this context, refers to *Protein Complementation Assays*, a technique where a reporter protein (e.g., fluorescent protein or enzyme) is split into inactive fragments that reconstitute functionality when brought together by interacting proteins. Recombinant proteins are tailored to carry these split fragments, enabling real-time detection of molecular interactions in live cells or in vitro systems.
The development of PCA recombinant proteins emerged from advancements in genetic engineering and structural biology, allowing precise control over protein design. These tools address limitations of traditional assays (e.g., co-immunoprecipitation) by offering spatiotemporal resolution, reduced background noise, and compatibility with high-throughput screening. For example, split-luciferase or split-GFP systems are widely used to map protein-protein interactions, monitor signaling pathways, or validate drug targets.
Applications span basic research and biotechnology. In drug discovery, PCA-based recombinant proteins enable rapid screening of compounds disrupting pathogenic interactions, such as viral entry or oncogenic signaling. In diagnostics, they underpin biosensors for detecting disease biomarkers or antibodies, as seen in SARS-CoV-2 serological assays. Additionally, synthetic biology leverages PCA modules to engineer synthetic circuits for cellular computation or metabolic pathway regulation.
Challenges include optimizing fragment reconstitution efficiency and minimizing nonspecific aggregation. Ongoing innovations focus on improving signal-to-noise ratios, multiplexing capabilities, and adapting PCA systems for in vivo imaging or therapeutic delivery. By combining modularity with functional versatility, PCA recombinant proteins remain pivotal tools in decoding biological complexity and advancing precision biomedicine.
×