纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | IDP |
Uniprot No | P48735 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 40-452aa |
氨基酸序列 | A DKRIKVAKPV VEMDGDEMTR IIWQFIKEKL ILPHVDIQLK YFDLGLPNRD QTDDQVTIDS ALATQKYSVA VKCATITPDE ARVEEFKLKK MWKSPNGTIR NILGGTVFRE PIICKNIPRL VPGWTKPITI GRHAHGDQYK ATDFVADRAG TFKMVFTPKD GSGVKEWEVY NFPAGGVGMG MYNTDESISG FAHSCFQYAI QKKWPLYMST KNTILKAYDG RFKDIFQEIF DKHYKTDFDK NKIWYEHRLI DDMVAQVLKS SGGFVWACKN YDGDVQSDIL AQGFGSLGLM TSVLVCPDGK TIEAEAAHGT VTRHYREHQK GRPTSTNPIA SIFAWTRGLE HRGKLDGNQD LIRFAQMLEK VCVETVESGA MTKDLAGCIH GLSNVKLNEH FLNTTDFLDT IKSNLDRALG RQ |
预测分子量 | 50,9 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于IDP(内在无序蛋白)重组蛋白的3-4篇参考文献,涵盖表达策略、结构分析和功能研究:
---
1. **文献名称**:*Intrinsically disordered proteins: regulation and disease*
**作者**:Uversky, V.N., Oldfield, C.J., Dunker, A.K.
**摘要**:综述了内在无序蛋白(IDPs)在细胞调控和疾病(如癌症、神经退行性疾病)中的作用,讨论了其重组表达的难点(如溶解度低、易聚集)及可能的解决方案(如融合标签、缓冲液优化)。
2. **文献名称**:*Recombinant expression and purification of intrinsically disordered proteins: Strategies and challenges*
**作者**:Xue, B., Blocquel, D., Habchi, J. et al.
**摘要**:系统总结了IDPs重组表达的优化策略,包括宿主选择(大肠杆菌、昆虫细胞)、融合蛋白设计(如SUMO、MBP标签)及纯化方法,强调动态结构对功能研究的影响。
3. **文献名称**:*NMR analysis of the conformational ensemble of an intrinsically disordered protein*
**作者**:Jensen, M.R., Zweckstetter, M., Huang, J. et al.
**摘要**:利用核磁共振(NMR)技术研究重组表达的IDP(如α-synuclein)的构象动态,揭示其结构无序性与结合配体的功能关联。
4. **文献名称**:*Small-angle X-ray scattering studies of intrinsically disordered proteins*
**作者**:Bernadó, P., Svergun, D.I.
**摘要**:通过小角X射线散射(SAXS)分析重组IDPs的溶液结构,证明其多构象态特性,并探讨该方法在解析动态结构中的应用价值。
---
这些文献涵盖了IDP重组表达的技术挑战、结构分析方法及其在疾病研究中的意义,适合作为相关研究的理论或方法学参考。
**Background of IDP Recombinant Proteins**
Intrinsically disordered proteins (IDPs) are a class of proteins lacking a fixed three-dimensional structure under physiological conditions, yet they play critical roles in cellular processes such as signaling, regulation, and molecular recognition. Unlike traditional structured proteins, IDPs exhibit conformational flexibility, enabling them to interact with diverse binding partners. This adaptability makes them essential in processes like transcription, cell cycle control, and stress responses. However, their inherent flexibility also poses challenges in studying and utilizing them experimentally.
Recombinant protein technology, which involves producing proteins by expressing cloned genes in host systems (e.g., *E. coli*, yeast, or mammalian cells), has become a cornerstone for studying IDPs. IDP recombinant proteins are engineered to retain their functional disorder while enabling large-scale production for research or therapeutic applications. Key advancements, such as fusion tags (e.g., GST, His-tag) and solubility enhancers, have improved their stability and purification. Additionally, optimized expression conditions (e.g., low temperature, chaperone co-expression) help mitigate aggregation, a common issue due to IDPs’ exposed hydrophobic regions.
The applications of recombinant IDPs span drug discovery, structural biology, and biomaterials. For example, disordered regions in proteins like tau (linked to neurodegenerative diseases) or p53 (a tumor suppressor) are targets for therapeutic intervention. Recombinant IDPs also serve as tools to study protein-protein interaction networks or phase separation phenomena.
Despite progress, challenges remain, including maintaining native-like disorder post-purification and scaling production for clinical use. Innovations in synthetic biology, machine learning-guided design, and alternative expression systems (e.g., cell-free or *Pichia pastoris*) are addressing these limitations. Overall, IDP recombinant proteins bridge the gap between understanding dynamic protein behavior and leveraging their unique properties for biomedical and industrial purposes.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×