纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | VPA |
Uniprot No | Q9NPH2 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-558aa |
氨基酸序列 | MEAAAQFFVESPDVVYGPEAIEAQYEYRTTRVSREGGVLKVHPTSTRFTFRTARQVPRLGVMLVGWGGNNGSTLTAAVLANRLRLSWPTRSGRKEANYYGSLTQAGTVSLGLDAEGQEVFVPFSAVLPMVAPNDLVFDGWDISSLNLAEAMRRAKVLDWGLQEQLWPHMEALRPRPSVYIPEFIAANQSARADNLIPGSRAQQLEQIRRDIRDFRSSAGLDKVIVLWTANTERFCEVIPGLNDTAENLLRTIELGLEVSPSTLFAVASILEGCAFLNGSPQNTLVPGALELAWQHRVFVGGDDFKSGQTKVKSVLVDFLIGSGLKTMSIVSYNHLGNNDGENLSAPLQFRSKEVSKSNVVDDMVQSNPVLYTPGEEPDHCVVIKYVPYVGDSKRALDEYTSELMLGGTNTLVLHNTCEDSLLAAPIMLDLALLTELCQRVSFCTDMDPEPQTFHPVLSLLSFLFKAPLVPPGSPVVNALFRQRSCIENILRACVGLPPQNHMLLEHKMERPGPSLKRVGPVAATYPMLNKKGPVPAATNGCTGDANGHLQEEPPMPTT |
预测分子量 | 61 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于VPA(病毒样颗粒抗原)重组蛋白的参考文献示例(注:内容为虚构示例,实际文献请查询数据库):
1. **"Structural analysis of recombinant HAV VP1 protein expressed in E. coli"**
- 作者:Zhang et al.
- 摘要:研究通过大肠杆菌表达系统成功表达甲型肝炎病毒(HAV)VP1重组蛋白,并利用X射线晶体学解析其三维结构,揭示了其与宿主细胞受体的潜在结合位点。
2. **"Immunogenicity evaluation of HPV L1 recombinant VPA in murine models"**
- 作者:Li & Wang
- 摘要:通过酵母表达系统制备HPV L1重组病毒样颗粒(VPA),动物实验表明其可诱导高水平中和抗体,为HPV疫苗开发提供候选抗原。
3. **"Purification and functional characterization of HBV core antigen recombinant protein"**
- 作者:Chen et al.
- 摘要:优化哺乳动物细胞表达系统纯化HBV核心抗原重组蛋白,证实其自组装为病毒样颗粒的能力及在诊断试剂中的高灵敏度应用。
4. **"Recombinant influenza HA-VPA fusion protein as a universal vaccine platform"**
- 作者:Smith et al.
- 摘要:将流感血凝素(HA)与VPA结构域融合表达,证明该重组蛋白可增强交叉免疫应答,为广谱流感疫苗设计提供新策略。
建议通过PubMed、Google Scholar或Web of Science检索关键词“recombinant VPA protein”“virus-like particle antigen”获取真实文献。
**Background of VPA Recombinant Protein**
VPA (Virus-like Particle Antigen) recombinant protein is a biotechnologically engineered molecule designed to mimic specific antigenic components of viral pathogens. Derived from viral structural proteins, VPA is typically produced using recombinant DNA technology, where target genes encoding viral antigens are cloned into expression vectors (e.g., bacterial, yeast, insect, or mammalian cell systems). This enables scalable, high-purity production of antigenic proteins without handling live viruses, enhancing safety and reproducibility.
VPA-based platforms gained prominence in vaccine development and diagnostic applications due to their ability to elicit robust immune responses. Unlike traditional vaccines, VPA lacks viral genetic material, eliminating replication risks while retaining native conformational epitopes critical for neutralizing antibody induction. For example, VPA proteins from viruses like HPV, hepatitis B, or SARS-CoV-2 have been utilized in subunit vaccines or serological assays.
The design of VPA often involves optimizing codon usage, post-translational modifications, and purification strategies to ensure stability and immunogenicity. Advances in structural biology and computational modeling further aid in refining antigenic regions for enhanced efficacy. Additionally, VPA’s versatility supports modular antigen display, enabling multivalent or chimeric vaccines targeting multiple strains or pathogens.
In research, VPA recombinant proteins serve as tools for studying virus-host interactions, antibody neutralization mechanisms, and immune evasion strategies. Their application extends to therapeutics, such as monoclonal antibody production and antiviral drug screening.
Overall, VPA recombinant proteins represent a safe, customizable, and scalable solution for addressing emerging infectious diseases and improving global vaccine accessibility. Their development aligns with modern biomanufacturing trends, emphasizing precision, speed, and adaptability in combating viral threats.
×