纯度 | >90%SDS-PAGE. |
种属 | E.coli |
靶点 | lptA |
Uniprot No | P0ADV1 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 28-185aa |
氨基酸序列 | VTGDTDQPIHIESDQQSLDMQGNVVTFTGNVIVTQGTIKINADKVVVTRPGGEQGKEVIDGYGKPATFYQMQDNGKPVEGHASQMHYELAKDFVVLTGNAYLQQVDSNIKGDKITYLVKEQKMQAFSDKGKRVTTVLVPSQLQDKNNKGQTPAQKKGN |
预测分子量 | 19.3 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于LptA重组蛋白的模拟参考文献示例(仅供参考,具体文献需通过学术数据库核实):
---
1. **文献名称**:*Structural Insights into LptA-Mediated Lipopolysaccharide Transport in Gram-Negative Bacteria*
**作者**:Smith J, Brown K, et al.
**摘要**:通过X射线晶体学解析了重组LptA蛋白的三维结构,揭示了其通过β-折叠结构结合脂多糖(LPS)的分子机制,并提出了LptA在LPS转运复合体(Lpt系统)中的动态构象变化。
2. **文献名称**:*Functional Characterization of Recombinant LptA in Escherichia coli: Role in Outer Membrane Biogenesis*
**作者**:Zhang Y, Wang L, et al.
**摘要**:在大肠杆菌中重组表达并纯化LptA蛋白,结合体外生化实验证明其与LPS的直接相互作用,并通过基因敲除互补实验验证了LptA对细菌外膜完整性的必要性。
3. **文献名称**:*Expression Optimization and Biochemical Analysis of Pseudomonas aeruginosa LptA*
**作者**:Lee S, Kim M, et al.
**摘要**:优化了铜绿假单胞菌LptA的重组表达条件(如诱导温度、IPTG浓度),利用镍柱亲和层析获得高纯度蛋白,并通过圆二色谱(CD)分析其二级结构稳定性。
4. **文献名称**:*In Vitro Reconstitution of the LptA-LptC Complex in LPS Transport*
**作者**:Johnson R, García-Lara J, et al.
**摘要**:通过共表达LptA与LptC蛋白,解析了二者形成的复合体结构,证实其在跨周质转运LPS过程中的协同作用,为抗菌药物靶点设计提供了依据。
---
**注意**:以上内容为模拟生成,实际文献需通过PubMed、Web of Science等平台检索关键词“LptA recombinant protein”或结合具体研究背景筛选。
**Background of LptA Recombinant Protein**
LptA (lipopolysaccharide transport protein A) is a critical component of the lipopolysaccharide (LPS) transport machinery in Gram-negative bacteria. LPS, a major constituent of the outer membrane, is essential for bacterial viability and contributes to antibiotic resistance and pathogenicity. The Lpt system, comprising seven proteins (LptA–LptG), facilitates the transport of LPS from the inner membrane to the outer membrane. Among these, LptA acts as a periplasmic bridge, shuttling LPS between the inner membrane-associated LptB2FG complex and the outer membrane-localized LptDE translocon.
Structurally, LptA adopts a elongated, curved architecture with a hydrophobic groove that binds and stabilizes LPS during transit. Its β-jellyroll fold and flexible regions enable dynamic interactions with other Lpt components. Recombinant LptA is typically produced in *Escherichia coli* expression systems, leveraging affinity tags (e.g., His-tags) for purification. Studies on recombinant LptA have provided insights into its role in LPS transport, including its ATPase-independent mechanism and cooperative binding with LptC and LptD.
Research on LptA has therapeutic implications. Disrupting LPS assembly via LptA inhibition could lead to novel antibiotics targeting multidrug-resistant pathogens. Additionally, recombinant LptA serves as a tool to study protein-LPS interactions, screen antimicrobial compounds, and develop vaccines by exploiting LPS-related immunogenicity. Challenges remain in resolving its conformational dynamics and optimizing recombinant production for structural or functional studies. Overall, LptA remains a focal point for understanding bacterial membrane biology and advancing antimicrobial strategies.
×