纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | pcl |
Uniprot No | O43189 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-567aa |
氨基酸序列 | MAQPPRLSRS GASSLWDPAS PAPTSGPRPR LWEGQDVLAR WTDGLLYLGT IKKVDSAREV CLVQFEDDSQ FLVLWKDISP AALPGEELLC CVCRSETVVP GNRLVSCEKC RHAYHQDCHV PRAPAPGEGE GTSWVCRQCV FAIATKRGGA LKKGPYARAM LGMKLSLPYG LKGLDWDAGH LSNRQQSYCY CGGPGEWNLK MLQCRSCLQW FHEACTQCLS KPLLYGDRFY EFECCVCRGG PEKVRRLQLR WVDVAHLVLY HLSVCCKKKY FDFDREILPF TSENWDSLLL GELSDTPKGE RSSRLLSALN SHKDRFISGR EIKKRKCLFG LHARMPPPVE PPTGDGALTS FPSGQGPGGG VSRPLGKRRR PEPEPLRRRQ KGKVEELGPP SAVRNQPEPQ EQRERAHLQR ALQASVSPPS PSPNQSYQGS SGYNFRPTDA RCLPSSPIRM FASFHPSAST AGTSGDSGPP DRSPLELHIG FPTDIPKSAP HSMTASSSSV SSPSPGLPRR SAPPSPLCRS LSPGTGGGVR GGVGYLSRGD PVRVLARRVR PDGSVQYLVE WGGGGIF |
预测分子量 | 62,1 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3-4条关于PCL(重组蛋白)相关研究的参考文献示例(内容基于研究领域常见方向概括,非真实文献):
---
1. **文献名称**: *"Recombinant PCL-Fusion Protein Enhances Bone Regeneration in 3D-Printed Scaffolds"*
**作者**: Zhang Y, et al.
**摘要**: 研究报道了一种重组PCL融合蛋白(PCL-BMP2),通过3D打印技术将其负载于聚己内酯(PCL)支架中,显著促进了成骨细胞分化和体内骨缺损修复。
2. **文献名称**: *"Targeted Drug Delivery Using PCL-Based Nanoparticles Loaded with Recombinant Therapeutic Proteins"*
**作者**: Gupta S, Lee HJ.
**摘要**: 开发了基于PCL的纳米颗粒载体,用于高效负载重组抗肿瘤蛋白(如PCL-TRAIL),通过靶向递送系统增强癌细胞凋亡并减少全身毒性。
3. **文献名称**: *"Engineering Recombinant PCL-Elastin Hybrid Proteins for Cardiovascular Tissue Repair"*
**作者**: Smith R, et al.
**摘要**: 通过基因工程将PCL与弹性蛋白重组表达,制备出兼具机械强度和生物相容性的新型材料,成功应用于心肌组织工程和血管修复。
4. **文献名称**: *"Immobilization of Recombinant PCL Enzymes on Electrospun Fibers for Biocatalytic Applications"*
**作者**: Wang L, et al.
**摘要**: 利用静电纺丝技术将重组PCL脂肪酶固定于PCL纤维膜表面,显著提高了酶的稳定性和重复利用率,适用于工业级生物催化反应。
---
注:以上为模拟概括性内容,实际文献需通过数据库(如PubMed、Web of Science)检索关键词“recombinant PCL protein”“PCL fusion protein”等获取。
**Background of PCL Recombinant Proteins**
Recombinant proteins, engineered through genetic modification, are produced by inserting target gene sequences into host organisms (e.g., bacteria, yeast, or mammalian cells) to express specific proteins. Polycaprolactone (PCL)-related recombinant proteins represent a niche but growing area in biomaterials and biomedical research. PCL, a biodegradable polyester, is widely used in tissue engineering, drug delivery, and regenerative medicine due to its biocompatibility and slow degradation rate. However, its hydrophobic nature and limited bioactivity often require functionalization with bioactive molecules to enhance cell adhesion, proliferation, or targeted therapeutic effects.
Recombinant proteins, such as growth factors (e.g., BMP-2. VEGF) or cell-adhesive peptides (e.g., RGD sequences), are integrated with PCL-based scaffolds or nanoparticles to create hybrid systems. These combinations aim to mimic natural extracellular matrix (ECM) environments or improve drug efficacy. For instance, PCL scaffolds coated with recombinant collagen or fibronectin fragments can direct stem cell differentiation, while PCL nanoparticles conjugated with antibody fragments enable targeted cancer therapy.
The production of such recombinant proteins typically involves cloning genes into expression vectors, optimizing expression conditions, and purifying proteins for conjugation. Challenges include maintaining protein stability during PCL processing (e.g., electrospinning or 3D printing) and ensuring controlled release kinetics. Advances in genetic engineering and material science continue to drive innovation, enabling tailored PCL-protein systems for personalized medicine, wound healing, and organ-on-chip technologies. This synergy between synthetic polymers and bioactive recombinant proteins holds promise for next-generation biomedical applications.
×