纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | TRAPPC3 |
Uniprot No | O43617 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-180aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MSRQANRGTE SKKMSSELFT LTYGALVTQL CKDYENDEDV NKQLDKMGFN IGVRLIEDFL ARSNVGRCHD FRETADVIAK VAFKMYLGIT PSITNWSPAG DEFSLILENN PLVDFVELPD NHSSLIYSNL LCGVLRGALE MVQMAVEAKF VQDTLKGDGV TEIRMRFIRR IEDNLPAGEE |
预测分子量 | 22 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于TRAPPC3重组蛋白的3篇参考文献的简要信息:
---
1. **文献名称**:*TRAPPC3 Regulates ER-Golgi Trafficking through Structural Maintenance of the TRAPP Complex*
**作者**:Kim, Y.G., Raunser, S., Munger, C. et al.
**摘要**:该研究利用重组表达的TRAPPC3蛋白,结合X射线晶体学分析其结构,揭示了TRAPPC3作为TRAPP复合体的核心组分,通过维持复合体稳定性调控内质网至高尔基体的囊泡运输过程。
---
2. **文献名称**:*Functional Characterization of TRAPPC3 in Vesicle Tethering through Recombinant Protein Reconstitution*
**作者**:Shen, D., Yuan, H., Wu, X. et al.
**摘要**:通过体外重组TRAPPC3与其他TRAPP亚基的共表达和纯化,证明TRAPPC3在囊泡锚定过程中与SNARE蛋白相互作用,并阐明了其GEF(鸟苷酸交换因子)活性对Rab GTPase的调控机制。
---
3. **文献名称**:*Mutation Analysis of TRAPPC3 in a Genetic Disorder Reveals Impaired Binding to COPII Vesicles*
**作者**:Liang, C., Li, Z., Wang, Q. et al.
**摘要**:研究通过构建TRAPPC3突变体重组蛋白,发现特定位点突变(如R118C)导致其无法与COPII囊泡结合,从而引发先天性糖基化障碍,揭示了TRAPPC3在分泌途径中的关键作用。
---
**备注**:上述文献为示例性内容,实际文献需通过学术数据库(如PubMed、Google Scholar)检索确认。建议结合关键词“TRAPPC3 recombinant”“TRAPP complex”“vesicle trafficking”查找最新研究。
TRAPPC3 (Trafficking Protein Particle Complex subunit 3) is a conserved component of the TRAPP (Transport Protein Particle) complexes, which are multisubunit assemblies critical for intracellular membrane trafficking in eukaryotic cells. Specifically, TRAPPC3 (also known as BET3) serves as a core subunit of the TRAPP I and TRAPP II complexes, facilitating vesicle-mediated transport between the endoplasmic reticulum (ER), Golgi apparatus, and endosomal compartments. It plays a pivotal role in tethering transport vesicles to target membranes, a prerequisite for SNARE-mediated membrane fusion. Structurally, TRAPPC3 adopts a compact α-helical fold and forms stable heterodimers with TRAPPC1 (BET5), which is essential for the assembly and stability of TRAPP complexes.
Recombinant TRAPPC3 protein is produced via heterologous expression systems (e.g., *E. coli* or mammalian cells) for functional and structural studies. Its recombinant form enables researchers to dissect molecular interactions, such as binding to Rab GTPases (e.g., Rab1. Rab11) or COPII vesicle components, and to model TRAPP complex dynamics. Mutations in TRAPPC3 have been linked to human diseases, including congenital glycosylation disorders and cancers, highlighting its biological relevance. For instance, truncated TRAPPC3 variants impair ER-to-Golgi trafficking, leading to glycosylation defects. Recombinant protein tools are instrumental in screening therapeutic compounds or characterizing disease-associated mutations. Recent studies also explore its role in autophagy and cytokine secretion, expanding its implications in immunity and neurodegeneration. Overall, TRAPPC3 recombinant protein serves as a key reagent for unraveling membrane trafficking mechanisms and their pathophysiological connections.
×