纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | RNASE2 |
Uniprot No | P10153 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 28-161aa |
氨基酸序列 | KPPQFTWAQWFETQHINMTSQQCTNAMQVINNYQRRCKNQNTFLLTTFANVVNVCGNPNMTCPSNKTRKNCHHSGSQVPLIHCNLTTPSPQNISNCRYAQTPANMFYIVACDNRDQRRDPPQYPVVPVHLDRII |
预测分子量 | 17.0 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于RNASE2重组蛋白的参考文献示例(注:以下内容为假设性概括,实际文献需通过学术数据库核实):
1. **《Expression and characterization of recombinant human RNASE2 in Escherichia coli》**
- **作者**: Smith A, et al.
- **摘要**: 该研究成功将人源RNASE2基因克隆至大肠杆菌表达系统,通过亲和层析纯化获得高纯度重组蛋白。实验证实重组RNASE2具有核糖核酸酶活性,并对特定病毒RNA表现出降解能力,为抗病毒治疗研究奠定基础。
2. **《Glycosylation modulates the stability and antiviral activity of recombinant RNASE2 in mammalian cells》**
- **作者**: Lee JH, et al.
- **摘要**: 研究在CHO细胞中表达糖基化修饰的重组RNASE2.发现糖基化显著增强蛋白稳定性及对呼吸道合胞病毒(RSV)RNA的切割效率,提示翻译后修饰对其功能的重要性。
3. **《Recombinant RNASE2 suppresses parasite survival in a murine helminth infection model》**
- **作者**: Zhang Y, et al.
- **摘要**: 通过昆虫细胞表达系统制备重组RNASE2.并在蠕虫感染小鼠模型中验证其抗寄生虫活性。结果显示该蛋白通过降解寄生虫RNA并激活宿主免疫反应,显著降低虫体负荷。
4. **《Structural and functional analysis of RNASE2 catalytic residues using site-directed mutagenesis》**
- **作者**: Johnson R, et al.
- **摘要**: 研究通过定点突变技术构建RNASE2重组突变体,结合晶体结构数据揭示关键氨基酸(如His15、Lys38)在酶活性和细胞毒性中的核心作用,为设计功能优化变体提供依据。
建议通过PubMed或Google Scholar以关键词“recombinant RNASE2”、“RNASE2 expression”或“eosinophil-derived neurotoxin”检索真实文献。
**Background of RNASE2 Recombinant Protein**
RNASE2. also known as eosinophil-derived neurotoxin (EDN), is a member of the ribonuclease A (RNASE) superfamily. It is primarily secreted by eosinophils, a type of immune cell involved in anti-parasitic and inflammatory responses. RNASE2 exhibits ribonucleolytic activity, enabling it to cleave single-stranded RNA, a mechanism critical for its role in host defense against RNA viruses and parasites. Unlike its close homolog RNASE3 (eosinophil cationic protein), RNASE2 has weaker cytotoxic effects but demonstrates potent neurotoxic and antiviral properties.
The recombinant RNASE2 protein is produced using biotechnological platforms, such as *E. coli* or mammalian expression systems, to ensure high purity and bioactivity. Recombinant production allows for precise control over post-translational modifications, enhancing its stability and functional consistency for research or therapeutic applications. Structurally, RNASE2 contains conserved catalytic residues (His-Lys-His) essential for enzymatic activity and a cationic region that facilitates interactions with negatively charged viral or microbial surfaces.
Research highlights RNASE2's dual role in immunity: (1) Direct pathogen clearance via RNA degradation and (2) modulation of immune responses by acting as an alarmin to activate dendritic cells or enhance T-cell responses. Its antiviral activity against HIV, respiratory syncytial virus (RSV), and influenza has been documented, positioning it as a potential therapeutic candidate. Additionally, elevated RNASE2 levels are linked to eosinophil-associated diseases (e.g., asthma, allergies), making it a biomarker for disease monitoring.
In cancer biology, RNASE2's role remains underexplored, though its ribonuclease activity and immunomodulatory functions suggest potential antitumor applications. Ongoing studies focus on engineering RNASE2 variants to improve specificity, reduce off-target effects, and optimize delivery systems for clinical translation. Overall, RNASE2 recombinant protein serves as a valuable tool for dissecting eosinophil biology and developing novel antiviral or immunotherapeutic strategies.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×