纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | NRF1 |
Uniprot No | Q96AN2 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-522aa |
氨基酸序列 | MEEHGVTQTEHMATIEAHAVAQQVQQVHVATYTEHSMLSADEDSPSSPED TSYDDSDILNSTAADEVTAHLAAAGPVGMAAAAAVATGKKRKRPHVFESN PSIRKRQQTRLLRKLRATLDEYTTRVGQQAIVLCISPSKPNPVFKVFGAA PLENVVRKYKSMILEDLESALAEHAPAPQEVNSELPPLTIDGIPVSVDKM TQAQLRAFIPEMLKYSTGRGKPGWGKESCKPIWWPEDIPWANVRSDVRTE EQKQRVSWTQALRTIVKNCYKQHGREDLLYAFEDQQTQTQATATHSIAHL VPSQTVVQTFSNPDGTVSLIQVGTGATVATLADASELPTTVTVAQVNYSA VADGEVEQNWATLQGGEMTIQTTQASEATQAVASLAEAAVAASQEMQQGA TVTMALNSEAAAHAVATLAEATLQGGGQIVLSGETAAAVGALTGVQDANG LFMADRAGRKWILTDKATGLVQIPVSMYQTVVTSLAQGNGPVQVAMAPVT TRISDSAVTMDGQAVEVVTLEQ |
预测分子量 | 82 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于NRF1重组蛋白的参考文献摘要概括:
1. **《Recombinant human NRF1: purification and biochemical characterization》**
- 作者:Scarpulla RC, et al.
- 摘要:报道了通过大肠杆菌系统重组表达人源NRF1蛋白的纯化方法,并分析了其DNA结合活性和对线粒体基因启动子的调控作用。
2. **《Structural insights into NRF1-DNA interaction using recombinant protein crystallography》**
- 作者:Sykes SM, et al.
- 摘要:利用重组表达的NRF1蛋白进行X射线晶体学研究,揭示了其DNA结合结构域与靶基因启动子结合的分子机制。
3. **《NRF1 recombinant protein rescues mitochondrial dysfunction in cellular models》**
- 作者:Zhang Y, et al.
- 摘要:通过体外实验证明,外源性重组NRF1蛋白可恢复细胞模型中因NRF1缺失导致的线粒体功能异常,支持其在代谢疾病治疗中的潜在应用。
注:以上文献信息为模拟概括,实际引用需以具体数据库(如PubMed/Web of Science)检索结果为准。
Nuclear Respiratory Factor 1 (NRF1), also known as α-Palindromic Binding Protein (α-PAL), is a critical transcription factor belonging to the basic leucine zipper (bZIP) family. It plays a central role in regulating mitochondrial biogenesis, respiratory chain gene expression, and cellular energy metabolism. NRF1 binds to conserved promoter elements of nuclear genes encoding mitochondrial proteins, including components of the electron transport chain (e.g., COX5B) and mitochondrial transcription machinery (e.g., TFAM). It also coordinates nuclear-mitochondrial communication by linking mitochondrial dysfunction to adaptive nuclear gene expression. Structurally, NRF1 contains a DNA-binding domain, a transactivation domain, and regulatory regions responsive to post-translational modifications like phosphorylation.
Recombinant NRF1 protein is engineered through molecular cloning, typically expressed in bacterial (e.g., E. coli) or mammalian systems, followed by purification using affinity chromatography. Its production enables functional studies of NRF1's interactions with DNA, co-regulators (e.g., PGC-1α), and signaling pathways (e.g., ERK-mediated phosphorylation). Researchers use recombinant NRF1 to investigate its role in diseases associated with mitochondrial dysfunction, such as neurodegenerative disorders (Alzheimer's, Parkinson's), metabolic syndromes, and cancer. In therapeutic contexts, modulating NRF1 activity shows potential for addressing conditions linked to oxidative stress and energy imbalance. However, challenges persist in understanding its tissue-specific regulation and crosstalk with other metabolic sensors like NRF2. Current studies focus on resolving its 3D structure and developing small-molecule modulators using recombinant protein platforms.
×