纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | ADH1B |
Uniprot No | P00325 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-375aa |
氨基酸序列 | MSTAGKVIKCKAAVLWEVKKPFSIEDVEVAPPKAYEVRIKMVAVGICRTD DHVVSGNLVTPLPVILGHEAAGIVESVGEGVTTVKPGDKVIPLFTPQCGK CRVCKNPESNYCLKNDLGNPRGTLQDGTRRFTCRGKPIHHFLGTSTFSQY TVVDENAVAKIDAASPLEKVCLIGCGFSTGYGSAVNVAKVTPGSTCAVFG LGGVGLSAVMGCKAAGAARIIAVDINKDKFAKAKELGATECINPQDYKKP IQEVLKEMTDGGVDFSFEVIGRLDTMMASLLCCHEACGTSVIVGVPPASQ NLSINPMLLLTGRTWKGAVYGGFKSKEGIPKLVADFMAKKFSLDALITHV LPFEKINEGFDLLHSGKSIRTVLTF |
预测分子量 | 67 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于ADH1B重组蛋白的参考文献及其摘要概括:
1. **文献名称**: "Expression and characterization of recombinant human ADH1B: Role in alcohol metabolism"
**作者**: Smith J, et al.
**摘要**: 该研究在大肠杆菌中成功表达并纯化了带有His标签的人源ADH1B重组蛋白。通过酶动力学分析,发现该蛋白对乙醇的催化效率(Km和Vmax)显著高于其他ADH亚型,揭示了其在酒精代谢中的关键作用。
2. **文献名称**: "Structural insights into ADH1B polymorphism via recombinant protein crystallography"
**作者**: Chen L, et al.
**摘要**: 利用X射线晶体学解析了ADH1B*2(Arg47His突变体)重组蛋白的三维结构,发现该突变导致活性中心构象变化,解释了其增强的乙醇脱氢酶活性,为人群酒精代谢差异提供分子机制依据。
3. **文献名称**: "Functional analysis of ADH1B recombinant protein in aldehyde detoxification"
**作者**: Tanaka K, et al.
**摘要**: 研究比较了ADH1B与其他亚型对乙醛的催化能力,发现重组ADH1B在低浓度底物下表现出更高的亲和力,提示其在解毒过程中可能具有独特生理意义,并验证了其在体外模型中的保护作用。
注:以上文献信息为示例性概括,实际文献需通过学术数据库检索获取。
**Background of ADH1B Recombinant Protein**
ADH1B (Alcohol Dehydrogenase 1B), a member of the alcohol dehydrogenase (ADH) enzyme family, plays a critical role in ethanol metabolism by catalyzing the oxidation of ethanol to acetaldehyde. This enzyme is encoded by the *ADH1B* gene, located on chromosome 4 in humans. ADH1B is particularly notable for its genetic polymorphisms, such as the His47Arg variant (rs1229984), which significantly enhances enzymatic activity and influences ethanol metabolism rates. Populations with this variant exhibit reduced risks of alcohol dependence, making *ADH1B* a key gene in studies of alcoholism and related disorders.
Recombinant ADH1B protein is produced using biotechnological methods, often through expression in bacterial (e.g., *E. coli*) or mammalian cell systems. This allows large-scale production of the purified enzyme for functional and structural studies. Recombinant ADH1B retains the catalytic properties of the native enzyme, enabling researchers to investigate its kinetic parameters, substrate specificity, and interactions with inhibitors or cofactors like NAD⁺.
Studies leveraging recombinant ADH1B have advanced our understanding of its role in alcohol-related diseases, pharmacogenetics, and metabolic disorders. For instance, its hyperactivity in certain variants correlates with faster acetaldehyde accumulation, causing adverse reactions (e.g., facial flushing) that deter excessive alcohol consumption. Beyond ethanol metabolism, ADH1B is implicated in metabolizing other substrates, including retinol and lipid peroxidation products, suggesting broader physiological roles in cellular detoxification and oxidative stress regulation.
The enzyme’s structure, resolved via X-ray crystallography using recombinant protein, reveals insights into active-site architecture and mechanisms underlying genetic variants. Additionally, recombinant ADH1B serves as a tool for drug screening, toxicology assessments, and enzyme replacement strategies. Its study remains vital for developing targeted therapies for alcohol use disorder, cancer (linked to acetaldehyde toxicity), and metabolic syndromes. Overall, ADH1B recombinant protein bridges genetic insights with biochemical applications, highlighting its importance in biomedical research.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×