纯度 | >95%SDS-PAGE. |
种属 | Human |
靶点 | NRXN3 |
Uniprot No | Q9HDB5-2 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-357aa |
氨基酸序列 | MHLRIHARRS PPRRPAWTLG IWFLFWGCIV SSVWSSSNVA SSSSTSSSPG SHSQHEHHFH GSKHHSVPIS IYRSPVSLRG GHAGATYIFG KSGGLILYTW PANDRPSTRS DRLAVGFSTT VKDGILVRID SAPGLGDFLQ LHIEQGKIGV VFNIGTVDIS IKEERTPVND GKYHVVRFTR NGGNATLQVD NWPVNEHYPT GRQLTIFNTQ AQIAIGGKDK GRLFQGQLSG LYYDGLKVLN MAAENNPNIK INGSVRLVGE VPSILGTTQT TSMPPEMSTT VMETTTTMAT TTTRKNRSTA SIQPTSDDLV SSAECSSDDE DFVECEPSTG RSANPTEPGI RRVPGASEVI RESSSTT |
预测分子量 | 36 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于NRXN3重组蛋白的3篇参考文献示例(注:以下内容基于领域内常见研究方向整合,具体文献需通过学术数据库验证):
1. **"Neurexin-3α: A Synaptic Organizer Protein Involved in GABAergic Interneuron Connectivity"**
*作者:Chen, L.Y., et al.*
**摘要**:本研究利用重组NRXN3α蛋白,揭示了其通过结合neuroligin-2调控GABA能中间神经元突触形成的机制,证实其重组蛋白在体外促进神经元黏附和突触蛋白聚集的能力。
2. **"Structural Basis of Neurexin-3 Alternative Splicing Diversity and Its Functional Implications"**
*作者:Uemura, T., et al.*
**摘要**:通过重组表达不同剪接变体的NRXN3胞外域,结合X射线晶体学分析,阐明了可变剪接对其与配体结合特异性及突触功能的影响。
3. **"Recombinant NRXN3 Extracellular Domain Modulates Dopamine Release in Reward Circuitry"**
*作者:Aoto, J., et al.*
**摘要**:研究利用重组NRXN3蛋白进行体外实验,发现其通过调控突触前钙信号通路影响多巴胺释放,为NRXN3在成瘾行为中的作用提供分子机制证据。
---
**备注**:以上文献为示例性内容,实际引用需通过PubMed、Google Scholar等平台检索真实存在的论文。建议使用关键词“NRXN3 recombinant protein”或“Neurexin-3 expression”进行查找,重点关注涉及蛋白表达纯化、结构解析或功能机制的研究。
Neurexin-3 (NRXN3) is a member of the neurexin family of presynaptic cell adhesion molecules that play critical roles in synapse formation, maintenance, and neurotransmission in the central nervous system. As a single-pass transmembrane protein, NRXN3 exists in two major isoforms (α and β) generated by alternative splicing. The α isoform contains multiple epidermal growth factor (EGF)-like and laminin G domains, while the β isoform features a shorter extracellular region. Both isoforms interact with postsynaptic partners like neuroligins and leucine-rich repeat transmembrane proteins (LRRTMs) to establish trans-synaptic bridges, facilitating cell-cell signaling and synaptic plasticity.
NRXN3 is particularly enriched in cortical and hippocampal regions, influencing neurotransmitter release specificity and synaptic connectivity. Genetic studies link NRXN3 variants to neuropsychiatric disorders, including autism spectrum disorder, schizophrenia, and addiction-related behaviors, underscoring its functional significance in neural circuitry. Recombinant NRXN3 proteins are engineered to study these mechanisms, typically produced in mammalian or insect cell systems to ensure proper post-translational modifications (e.g., glycosylation). These purified proteins are utilized in structural studies, binding assays, and neuronal culture experiments to dissect synaptic adhesion pathways. Researchers also employ NRXN3 extracellular domains to probe interactions with postsynaptic ligands or model synapse formation in vitro. By providing a controlled, bioactive form of the protein, recombinant NRXN3 serves as a vital tool for exploring neurodevelopmental processes and validating therapeutic targets associated with synaptic dysfunction.
×