纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | IMA |
Uniprot No | O15131 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-539aa |
氨基酸序列 | MDAMASPGKDNYRMKSYKNKALNPQEMRRRREEEGIQLRKQKREEQLFKRRNVYLPRNDESMLESPIQDPDISSTVPIPEEEVVTTDMVQMIFSNNADQQLTATQKFRKLLSKEPNPPIDQVIQKPGVVQRFVKFLERNENCTLQFEAAWALTNIASGTFLHTKVVIETGAVPIFIKLLNSEHEDVQEQAVWALGNIAGDNAECRDFVLNCEILPPLLELLTNSNRLTTTRNAVWALSNLCRGKNPPPNFSKVSPCLNVLSRLLFSSDPDVLADVCWALSYLSDGPNDKIQAVIDSGVCRRLVELLMHNDYKVVSPALRAVGNIVTGDDIQTQVILNCSALPCLLHLLSSPKESIRKEACWTVSNITAGNRAQIQAVIDANIFPVLIEILQKAEFRTRKEAAWAITNATSGGTPEQIRYLVALGCIKPLCDLLTVMDSKIVQVALNGLENILRLGEQESKQNGIGINPYCALIEEAYGLDKIEFLQSHENQEIYQKAFDLIEHYFGVEEDDPSIVPQVDENQQQFIFQQQEAPMDGFQL |
预测分子量 | 60 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于IMA重组蛋白的虚构参考文献示例,供参考格式和内容方向:
---
1. **文献名称**:*"High-Yield Production of IMA-Recombinant Protein in Pichia pastoris: Optimization and Functional Analysis"*
**作者**:Chen L. et al.
**摘要**:研究利用毕赤酵母系统高效表达IMA重组蛋白,通过优化启动子及培养条件提升产量,并验证其在体外免疫检测中的生物活性。
2. **文献名称**:*"IMA-Recombinant Protein Conjugated Nanoparticles for Enhanced Drug Delivery in Neurodegenerative Diseases"*
**作者**:Gupta R. et al.
**摘要**:开发了一种结合IMA重组蛋白的纳米颗粒载体,可穿越血脑屏障,显著提高阿尔茨海默病模型小鼠中的药物递送效率。
3. **文献名称**:*"Crystallographic Insights into the Binding Mechanism of IMA-Recombinant Protein with Antigenic Targets"*
**作者**:Tanaka K. et al.
**摘要**:通过X射线晶体学解析了IMA重组蛋白与特定抗原的复合物结构,阐明其高亲和力结合的分子基础,为疫苗设计提供理论支持。
4. **文献名称**:*"Diagnostic Potential of IMA-Recombinant Protein in Early Detection of Bacterial Infections"*
**作者**:Müller S. et al.
**摘要**:评估IMA重组蛋白作为生物标志物探针的效能,临床研究表明其可快速识别败血症患者血清中的病原体特异性抗体。
---
**提示**:以上为示例文献,实际研究中请通过学术数据库(如PubMed、Web of Science)检索真实文献,并核对作者、标题及摘要准确性。
**Background of IMA Recombinant Proteins**
Recombinant proteins, such as those developed under the IMA (Immune Modulatory Agent) platform, are engineered using advanced biotechnology to mimic or enhance naturally occurring proteins. These proteins are produced by introducing specific DNA sequences into host organisms (e.g., bacteria, yeast, or mammalian cells), enabling large-scale synthesis of target proteins with high purity and consistency. The IMA platform focuses on designing proteins that modulate immune responses, offering potential therapeutic applications in autoimmune diseases, cancer, and infectious diseases.
The development of recombinant protein technology began in the 1970s with breakthroughs in genetic engineering, such as the creation of synthetic insulin. Over time, advancements in expression systems, protein folding, and purification methods (e.g., affinity chromatography) have optimized production efficiency. IMA-based proteins often incorporate features like enhanced stability, reduced immunogenicity, or targeted delivery, achieved through techniques like site-directed mutagenesis or fusion tags.
IMA recombinant proteins are particularly valuable in immunotherapy. For example, they may act as cytokine analogs to regulate inflammation, checkpoint inhibitors to boost anti-tumor immunity, or antigen-presenting molecules for vaccine development. Their scalability and customization make them preferable to traditional therapies, which often face limitations in specificity or manufacturing complexity.
Despite their promise, challenges remain, including ensuring proper post-translational modifications in non-mammalian systems and minimizing production costs. Ongoing research aims to refine expression platforms and improve functional characterization. As personalized medicine grows, IMA recombinant proteins are poised to play a pivotal role in next-generation biologics, bridging gaps in treating complex immune-related disorders.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×