首页 / 产品 / 蛋白 / 其他蛋白

Recombinant Human GFP protein

  • 中文名: 绿色荧光蛋白(GFP)重组蛋白
  • 别    名: GFP;NIDHPO;Nidogen-1
货号: PA1000-1229
Price: ¥询价
数量:
大包装询价

产品详情

纯度>90%SDS-PAGE.
种属Human
靶点GFP
Uniprot NoP42212
内毒素< 0.01EU/μg
表达宿主E.coli
表达区间1-238aa
氨基酸序列MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK
预测分子量42.9kDa
蛋白标签His tag N-Terminus
缓冲液PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300.
稳定性 & 储存条件Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt.
Reconstituted protein solution can be stored at 2-8°C for 2-7 days.
Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months.
复溶Always centrifuge tubes before opening.Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.

参考文献

以下是3-4条关于GFP重组蛋白的经典参考文献及简要摘要:

1. **文献名称**:*Green fluorescent protein as a marker for gene expression*

**作者**:Chalfie, M. et al. (1994)

**摘要**:该研究首次成功将绿色荧光蛋白(GFP)在异源生物系统(如大肠杆菌和线虫)中表达,证明其无需额外底物即可自发荧光,成为基因表达和蛋白质定位的通用标记工具。

2. **文献名称**:*Primary structure of the Aequorea victoria green-fluorescent protein*

**作者**:Prasher, D.C. et al. (1992)

**摘要**:该研究克隆并测序了水母(Aequorea victoria)的GFP基因,解析了其氨基酸序列和发光机制,为后续重组GFP的基因工程应用奠定基础。

3. **文献名称**:*The green fluorescent protein*

**作者**:Tsien, R.Y. (1998)

**摘要**:综述了GFP的荧光机制及其工程化改造,包括突变体(如蓝色、黄色荧光变体)的开发,显著提升了其亮度、稳定性和光谱多样性,推动了活细胞成像的革新。

4. **文献名称**:*Understanding, improving and using green fluorescent proteins*

**作者**:Cubitt, A.B. et al. (1999)

**摘要**:系统总结了GFP突变体(如EGFP、EBFP等)的光谱特性优化策略,及其在多色标记、环境响应(如pH敏感型)等领域的应用潜力。

这些文献涵盖了GFP的基因克隆、异源表达、工程化改进及多场景应用,是重组GFP研究领域的基石。

背景信息

**Background of GFP Recombinant Protein**

Green Fluorescent Protein (GFP), originally isolated from the jellyfish *Aequorea victoria* in the 1960s, has become a revolutionary tool in molecular and cellular biology. Its ability to emit bright green fluorescence upon exposure to ultraviolet or blue light, without requiring additional cofactors or substrates, sparked widespread interest. The cloning and characterization of the GFP gene in the 1990s enabled its recombinant expression in heterologous systems, marking a breakthrough in visualizing biological processes in living cells and organisms.

GFP’s structure comprises a β-barrel fold enclosing a chromophore formed by autocatalytic cyclization and oxidation of three internal amino acids (Ser65. Tyr66. and Gly67). This self-sufficient fluorescence mechanism allows GFP to function as a genetically encoded tag. Researchers fuse the *gfp* gene to target proteins, enabling real-time tracking of protein localization, expression dynamics, and interactions within cells.

The engineering of GFP variants (e.g., enhanced GFP, EGFP) and color-shifted derivatives (e.g., CFP, YFP) expanded its utility in multicolor imaging and biosensing. GFP-based applications span live-cell imaging, gene expression analysis, protein trafficking studies, and monitoring cellular responses. It has also been instrumental in developing biosensors, drug screening platforms, and environmental monitoring tools.

GFP’s non-invasive nature, high sensitivity, and compatibility with diverse organisms (from bacteria to mammals) have cemented its role as a cornerstone of modern biotechnology. Its discovery earned the 2008 Nobel Prize in Chemistry, underscoring its transformative impact on life sciences. Today, GFP recombinant proteins remain indispensable for advancing research in cell biology, neuroscience, cancer studies, and synthetic biology.

客户数据及评论

折叠内容

大包装询价

×