纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | D |
Uniprot No | Q70J99 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-1090aa |
氨基酸序列 | MATLLSHPQQRPPFLRQAIKIRRRRVRDLQDPPPQMAPEIQPPSHHFSPEQRALLYEDALYTVLHRLGHPEPNHVTEASELLRYLQEAFHVEPEEHQQTLQRVRELEKPIFCLKATVKQAKGILGKDVSGFSDPYCLLGIEQGVGVPGGSPGSRHRQKAVVRHTIPEEETHRTQVITQTLNPVWDETFILEFEDITNASFHLDMWDLDTVESVRQKLGELTDLHGLRRIFKEARKDKGQDDFLGNVVLRLQDLRCREDQWYPLEPRTETYPDRGQCHLQFQLIHKRRATSASRSQPSYTVHLHLLQQLVSHEVTQHEAGSTSWDGSLSPQAATVLFLHATQKDLSDFHQSMAQWLAYSRLYQSLEFPSSCLLHPITSIEYQWIQGRLKAEQQEELAASFSSLLTYGLSLIRRFRSVFPLSVSDSPARLQSLLRVLVQMCKMKAFGELCPNTAPLPQLVTEALQTGTTEWFHLKQQHHQPMVQGIPEAGKALLGLVQDVIGDLHQCQRTWDKIFHNTLKIHLFSMAFRELQWLVAKRVQDHTTVVGDVVSPEMGESLFQLYISLKELCQLRMSSSERDGVLALDNFHRWFQPAIPSWLQKTYNEALARVQRAVQMDELVPLGELTKHSTSAVDLSTCFAQISHTARQLDWPDPEEAFMITVKFVEDTCRLALVYCSLIKARARELSSGQKDQGQAANMLCVVVNDMEQLRLVIGKLPAQLAWEALEQRVGAVLEQGQLQNTLHAQLQSALAGLGHEIRTGVRTLAEQLEVGIAKHIQKLVGVRESVLPEDAILPLMKFLEVELCYMNTNLVQENFSSLLTLLWTHTLTVLVEAAASQRSSSLASNRLKIALQNLEICFHAEGCGLPPKALHTATFQALQRDLELQAASSRELIRKYFCSRIQQQAETTSEELGAVTVKASYRASEQKLRVELLSASSLLPLDSNGSSDPFVQLTLEPRHEFPELAARETQKHKKDLHPLFDETFEFLVPAEPCRKAGACLLLTVLDYDTLGADDLEGEAFLPLREVPGLSGSEEPGEVPQTRLPLTYPAPNGDPILQLLEGRKGDREAQVFVRLRRHRAKQASQHALRPAP |
预测分子量 | 123 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于重组蛋白D的3-4条示例参考文献(内容为虚构,仅供格式参考):
---
1. **文献名称**:*Expression and Purification of Recombinant Pseudomonas aeruginosa Toxin D in E. coli*
**作者**:Glenn, M. et al. (2019)
**摘要**:研究通过大肠杆菌表达系统高效制备铜绿假单胞菌外毒素D(重组蛋白D),优化纯化工艺并验证其免疫原性,为疫苗开发提供基础。
2. **文献名称**:*Structural Insights into Recombinant Protein D from Haemophilus influenzae*
**作者**:Zhang, Y. et al. (2016)
**摘要**:利用X射线晶体学解析流感嗜血杆菌重组蛋白D的三维结构,揭示其与宿主细胞受体的相互作用机制,为抗感染药物设计提供依据。
3. **文献名称**:*Recombinant Protein D as a Carrier in Conjugate Vaccines: Immunogenicity Evaluation*
**作者**:Chen, L. et al. (2020)
**摘要**:评估重组蛋白D作为多糖结合疫苗载体的效果,在小鼠模型中显示其可增强免疫应答且安全性良好,适用于多价疫苗开发。
4. **文献名称**:*Functional Characterization of Recombinant Protein D in Bacterial Pathogenesis*
**作者**:Ibrahim, S. et al. (2018)
**摘要**:通过基因敲除和回补实验,证明重组蛋白D在细菌粘附与宿主炎症反应中的关键作用,为靶向治疗提供新策略。
---
**注**:以上文献为示例,实际引用需查询真实数据库(如PubMed、ScienceDirect)。
**Background of Recombinant D-Proteins**
Recombinant proteins, engineered through genetic modification, are pivotal in modern biotechnology and medicine. The "D-recombinant protein" typically refers to a protein designed using recombinant DNA technology, where specific genes are inserted into host organisms (e.g., bacteria, yeast, or mammalian cells) to produce desired protein variants. The "D" designation may denote a specific subtype, domain, or engineered feature, such as enhanced stability, altered binding affinity, or modified functional domains tailored for therapeutic or diagnostic applications.
Historically, recombinant protein technology emerged in the 1970s-1980s, enabling mass production of human insulin, growth hormones, and vaccines. D-recombinant proteins often build on this legacy, targeting complex diseases like cancer, autoimmune disorders, or infectious diseases. For instance, monoclonal antibodies, cytokine variants, or viral antigen fragments (e.g., SARS-CoV-2 spike proteins) are common examples. These proteins are optimized for specificity, reduced immunogenicity, or improved pharmacokinetics compared to natural counterparts.
A key advantage lies in scalability and safety. Unlike proteins extracted from human or animal sources, recombinant systems minimize contamination risks and allow precise modifications. For example, D-recombinant proteins may incorporate fusion tags (e.g., Fc regions) to prolong half-life or solubility-enhancing sequences. Challenges include ensuring proper post-translational modifications (e.g., glycosylation) in eukaryotic systems and maintaining structural integrity during large-scale production.
In therapeutics, D-recombinant proteins are used in targeted therapies, such as checkpoint inhibitors in oncology or enzyme replacements for genetic disorders. In diagnostics, they serve as antigens in immunoassays or vaccine development. Ongoing research focuses on engineering multifunctional proteins, leveraging AI-driven design, and improving expression systems to meet clinical and industrial demands.
In summary, D-recombinant proteins represent a versatile toolset in biopharmaceutical innovation, bridging molecular biology and translational medicine to address unmet medical needs.
×