纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | TSC1 |
Uniprot No | Q92574 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 690-993aa |
氨基酸序列 | TLRDQLLLLHNQLLYERFKRQQHALRNRRLLRKVIKAAALEEHNAAMKDQLKLQEKDIQMWKVSLQKEQARYNQLQEQRDTMVTKLHSQIRQLQHDREEFYNQSQELQTKLEDCRNMIAELRIELKKANNKVCHTELLLSQVSQKLSNSESVQQQMEFLNRQLLVLGEVNELYLEQLQNKHSDTTKEVEMMKAAYRKELEKNRSHVLQQTQRLDTSQKRILELESHLAKKDHLLLEQKKYLEDVKLQARGQLQAAESRYEAQKRITQVFELEILDLYGRLEKDGLLKKLEEEKAEAAEAAEERL |
预测分子量 | 42.3 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3篇关于TSC1重组蛋白的模拟参考文献(实际文献需通过学术数据库查询):
1. **文献名称**:*Structural insights into the TSC1-TSC2 complex formation using recombinant proteins*
**作者**:Smith J. et al.
**摘要**:通过重组表达纯化TSC1和TSC2蛋白,解析了二者复合物的晶体结构,揭示了TSC1通过卷曲螺旋结构域与TSC2相互作用的分子机制。
2. **文献名称**:*Functional characterization of recombinant TSC1 in mTOR signaling regulation*
**作者**:Lee H. et al.
**摘要**:利用重组TSC1蛋白进行体外实验,证明其与TSC2协同抑制mTORC1活性,并发现磷酸化修饰对TSC1功能的关键调控作用。
3. **文献名称**:*Expression and purification of human TSC1 recombinant protein in E. coli*
**作者**:Wang Y. et al.
**摘要**:优化了人源TSC1蛋白在大肠杆菌中的重组表达条件,采用亲和层析技术高效纯化,为后续功能研究提供高纯度蛋白。
4. **文献名称**:*TSC1 recombinant protein rescues autophagy defects in TSC-deficient cells*
**作者**:Garcia R. et al.
**摘要**:通过外源添加重组TSC1蛋白,恢复了结节性硬化症模型细胞的自噬功能,验证了TSC1在细胞稳态中的必要性。
(注:以上内容为模拟生成,实际文献请通过PubMed、Google Scholar等平台检索。)
**Background of TSC1 Recombinant Protein**
TSC1 (tuberous sclerosis complex 1) is a tumor suppressor protein encoded by the *TSC1* gene, which plays a critical role in regulating cell growth and proliferation. It forms a heterodimeric complex with TSC2 (tuberin) to inhibit the mammalian target of rapamycin complex 1 (mTORC1), a central regulator of cellular metabolism and anabolic processes. This TSC1-TSC2 complex acts as a GTPase-activating protein (GAP) for the small GTPase Rheb, converting it into its inactive GDP-bound state, thereby suppressing mTORC1 signaling. Dysregulation of this pathway is linked to tumorigenesis, metabolic disorders, and neurological abnormalities.
Mutations in *TSC1* or *TSC2* cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by benign tumors in multiple organs, seizures, and neurodevelopmental deficits. Studying TSC1’s structure and function is vital for understanding TSC pathogenesis and developing targeted therapies. Recombinant TSC1 protein, produced via expression systems like *E. coli* or mammalian cells, enables in vitro studies of its interactions, post-translational modifications (e.g., phosphorylation by AKT or AMPK), and mechanisms of mTORC1 regulation.
Recombinant TSC1 is also used to screen mTOR inhibitors, model TSC-associated cellular pathways, and explore therapeutic strategies, such as rapamycin analogs (rapalogs) or newer mTOR kinase inhibitors. Its production often involves affinity tags (e.g., His-tag) for purification and detection. Research on TSC1 recombinant protein continues to advance insights into cell signaling, cancer biology, and precision medicine for TSC and related mTORopathies.
×