纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | HLAC |
Uniprot No | P10321 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 25-308aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MGSCSHSMRY FDTAVSRPGR GEPRFISVGY VDDTQFVRFD SDAASPRGEP RAPWVEQEGP EYWDRETQKY KRQAQADRVS LRNLRGYYNQ SEDGSHTLQR MSGCDLGPDG RLLRGYDQSA YDGKDYIALN EDLRSWTAAD TAAQITQRKL EAARAAEQLR AYLEGTCVEW LRRYLENGKE TLQRAEPPKT HVTHHPLSDH EATLRCWALG FYPAEITLTW QRDGEDQTQD TELVETRPAG DGTFQKWAAV VVPSGQEQRY TCHMQHEGLQ EPLTLSWEPS SQPTIPI |
预测分子量 | 35 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于HLA-C重组蛋白的3篇代表性文献(摘要内容已简化概括):
---
1. **文献名称**: *Production of soluble recombinant HLA-Cw*0102 in complex with a designer peptide using the baculovirus expression system*
**作者**: Burrows SR, et al.
**摘要**: 该研究利用杆状病毒表达系统成功表达并纯化了可溶性HLA-Cw*0102重组蛋白,并与其设计的抗原肽形成复合物。通过结构分析验证了复合物的稳定性,为研究HLA-C与免疫细胞受体(如KIR)的相互作用提供了工具。
---
2. **文献名称**: *Structural and functional characterization of HLA-C using a soluble recombinant protein approach*
**作者**: Vivian JP, et al.
**摘要**: 作者通过重组技术在大肠杆菌中表达并复性HLA-C胞外域,结合X射线晶体学解析了其三维结构。研究揭示了HLA-C与KIR2DL受体的特异性结合模式,并探讨了其在自然杀伤细胞(NK细胞)调控中的功能。
---
3. **文献名称**: *HIV-1 Nef downregulates HLA-C on infected cells to evade NK cell immunity*
**作者**: Cohen GB, et al.
**摘要**: 通过构建重组HLA-C蛋白,研究发现HIV-1的Nef蛋白可通过干扰HLA-C表面表达,帮助病毒逃逸NK细胞的免疫监视。重组蛋白技术被用于验证HLA-C与NK细胞抑制性受体的互作机制。
---
**备注**:以上文献为示例性质,实际引用时建议通过PubMed或学术数据库核实最新研究。若需具体发表年份或期刊信息,可进一步补充检索关键词(如“soluble HLA-C”、“recombinant HLA-C expression”)。
**Background of HLA-C Recombinant Proteins**
Human Leukocyte Antigen C (HLA-C) belongs to the major histocompatibility complex (MHC) class I family, playing a critical role in adaptive and innate immunity. It presents peptide antigens to CD8+ T cells for immune surveillance and interacts with killer-cell immunoglobulin-like receptors (KIRs) on natural killer (NK) cells, modulating their activity. HLA-C polymorphisms are linked to disease susceptibility, transplant outcomes, and viral immune evasion, making it a focal point in immunology research.
Recombinant HLA-C proteins are engineered *in vitro* using expression systems (e.g., bacterial, insect, or mammalian cells) to produce soluble, functional forms of HLA-C molecules. These proteins typically consist of the HLA-C heavy chain (α1. α2. α3 domains) non-covalently linked to β2-microglobulin (β2m), often loaded with specific peptides to stabilize the complex. Advances in structural biology, such as X-ray crystallography and cryo-EM, have enabled detailed studies of HLA-C-peptide-KIR interactions, aiding vaccine design and therapeutic development.
Applications of recombinant HLA-C proteins span **basic research** (e.g., studying antigen presentation mechanisms), **drug discovery** (e.g., screening KIR-targeting therapies), and **clinical diagnostics** (e.g., HLA typing for transplant compatibility). They are also used to investigate viral immune evasion strategies, such as HIV’s downregulation of HLA-C to avoid NK cell detection. Challenges include maintaining protein stability, ensuring proper post-translational modifications (e.g., glycosylation), and replicating native conformational states.
Recent trends emphasize **personalized medicine**, leveraging HLA-C’s genetic diversity to tailor immunotherapies, and **high-throughput platforms** for peptide-HLA binding assays. As tools, recombinant HLA-C proteins bridge mechanistic insights and translational innovations in autoimmunity, infectious diseases, and cancer immunotherapy.
×