纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | gabT |
Uniprot No | P63505 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-449aa |
氨基酸序列 | MASLQQSRRLVTEIPGPASQALTHRRAAAVSSGVGVTLPVFVARAGGGIVEDVDGNRLIDLGSGIAVTTIGNSSPRVVDAVRTQVAEFTHTCFMVTPYEGYVAVAEQLNRITPGSGPKRSVLFNSGAEAVENAVKIARSYTGKPAVVAFDHAYHGRTNLTMALTAKSMPYKSGFGPFAPEIYRAPLSYPYRDGLLDKQLATNGELAAARAIGVIDKQVGANNLAALVIEPIQGEGGFIVPAEGFLPALLDWCRKNHVVFIADEVQTGFARTGAMFACEHEGPDGLEPDLICTAKGIADGLPLSAVTGRAEIMNAPHVGGLGGTFGGNPVACAAALATIATIESDGLIERARQIERLVTDRLTTLQAVDDRIGDVRGRGAMIAVELVKSGTTEPDAGLTERLATAAHAAGVIILTCGMFGNIIRLLPPLTIGDELLSEGLDIVCAILADL |
预测分子量 | 54.3 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于 **gabT 重组蛋白** 的模拟参考文献示例(仅供参考,实际文献需通过学术数据库检索):
---
1. **文献名称**:*Cloning, Expression, and Characterization of Recombinant gabT Protein from Escherichia coli*
**作者**:Zhang Y, et al.
**摘要**:研究报道了通过克隆大肠杆菌的gabT基因,利用原核表达系统成功表达可溶性重组GabT蛋白,并验证其γ-氨基丁酸(GABA)转氨酶活性,为后续代谢途径分析提供基础。
2. **文献名称**:*Optimization of gabT Recombinant Protein Production in Pichia pastoris for Industrial Applications*
**作者**:Lee S, Kim JH.
**摘要**:通过毕赤酵母表达系统优化gabT重组蛋白的分泌表达条件,显著提高蛋白产量及稳定性,探究其在工业生物催化中的潜在应用价值。
3. **文献名称**:*Structural Insights into gabT-Encoded Aminotransferase: Crystallographic Analysis of a Recombinant Enzyme*
**作者**:Müller R, et al.
**摘要**:首次解析了重组GabT蛋白的晶体结构,揭示其底物结合位点及催化机制,为设计针对神经代谢疾病的抑制剂提供结构基础。
4. **文献名称**:*Functional Role of gabT in Bacterial GABA Metabolism: A Study Using Recombinant Protein Knockout Strains*
**作者**:Tanaka K, et al.
**摘要**:通过构建gabT基因敲除菌株并回补重组GabT蛋白,证明其在细菌GABA分解代谢中的关键作用,及对细胞应激耐受性的影响。
---
**提示**:实际文献可通过 **PubMed/Google Scholar** 等平台,以关键词“gabT recombinant protein”“GabT aminotransferase expression”等检索。
The gabT gene encodes a γ-aminobutyrate (GABA) transaminase, a critical enzyme in microbial and eukaryotic GABA metabolism. This pyridoxal 5'-phosphate (PLP)-dependent enzyme catalyzes the conversion of GABA to succinate semialdehyde as part of the GABA shunt pathway, which interfaces with the tricarboxylic acid (TCA) cycle to regulate cellular energy production and nitrogen metabolism. In bacteria such as *Escherichia coli*, GabT plays a role in detoxifying excess GABA and maintaining metabolic balance under specific environmental conditions.
Recombinant GabT protein production typically involves cloning the gabT gene into expression vectors (e.g., pET or pGEX systems) followed by heterologous expression in bacterial hosts like *E. coli*. This approach enables high-yield purification of the enzyme for structural and functional studies. Researchers often employ affinity tags (e.g., His-tag) and chromatography techniques to isolate the recombinant protein. Interest in GabT stems from its biotechnological and biomedical relevance. Structurally, it serves as a model for studying PLP-dependent enzyme mechanisms, while its substrate specificity has implications for designing biosensors or enzymatic assays for GABA detection.
In applied contexts, GabT has been explored for microbial synthesis of industrial chemicals like succinate derivatives. Recent studies also investigate its potential in metabolic engineering to modulate GABA levels in probiotic strains, with possible therapeutic applications in neurological disorders (e.g., epilepsy, anxiety) linked to GABA imbalance. Additionally, microbial GabT homologs are studied for their role in plant-microbe interactions, particularly in rhizobia, where GABA metabolism influences symbiotic nitrogen fixation. Despite progress, challenges remain in optimizing recombinant GabT stability and activity for industrial-scale applications, driving ongoing research into protein engineering and expression system optimization.
×