纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | IVD |
Uniprot No | P26440 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 30-423aa |
氨基酸序列 | H SLLPVDDAIN GLSEEQRQLR QTMAKFLQEH LAPKAQEIDR SNEFKNLREF WKQLGNLGVL GITAPVQYGG SGLGYLEHVL VMEEISRASG AVGLSYGAHS NLCINQLVRN GNEAQKEKYL PKLISGEYIG ALAMSEPNAG SDVVSMKLKA EKKGNHYILN GNKFWITNGP DADVLIVYAK TDLAAVPASR GITAFIVEKG MPGFSTSKKL DKLGMRGSNT CELIFEDCKI PAANILGHEN KGVYVLMSGL DLERLVLAGG PLGLMQAVLD HTIPYLHVRE AFGQKIGHFQ LMQGKMADMY TRLMACRQYV YNVAKACDEG HCTAKDCAGV ILYSAECATQ VALDGIQCFG GNGYINDFPM GRFLRDAKLY EIGAGTSEVR RLVIGRAFNA DFH |
预测分子量 | kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3-4篇与IVD(体外诊断)重组蛋白相关的示例参考文献(内容为模拟生成,非真实文献):
---
1. **文献名称**:*Development of Recombinant Antigens for Serodiagnosis of Infectious Diseases*
**作者**:Smith J. et al.
**摘要**:研究利用大肠杆菌表达系统制备重组蛋白抗原,用于HIV和肝炎病毒抗体检测试剂盒,验证其灵敏度和特异性优于传统抗原,为IVD提供低成本、高稳定性解决方案。
2. **文献名称**:*Optimization of Recombinant Protein Expression in Mammalian Cells for IVD Applications*
**作者**:Li X. & Wang H.
**摘要**:通过优化CHO细胞培养条件和载体设计,提高癌症标志物重组蛋白(如CEA、PSA)的产量和稳定性,满足IVD试剂对高纯度蛋白的需求,并验证其在临床检测中的一致性。
3. **文献名称**:*CRISPR-based Engineering of Recombinant Antibodies for Enhanced Diagnostic Performance*
**作者**:Chen R. et al.
**摘要**:利用CRISPR技术改造重组抗体的亲和力和交叉反应性,开发出针对SARS-CoV-2的高灵敏度检测试剂,显著降低假阳性率,推动IVD领域的抗体工程技术革新。
4. **文献名称**:*Comparative Study of Yeast vs. Bacterial Systems for IVD-grade Recombinant Protein Production*
**作者**:Garcia M. et al.
**摘要**:对比毕赤酵母和大肠杆菌表达系统在IVD重组蛋白(如炎症因子IL-6)生产中的优劣,分析糖基化修饰对诊断试剂性能的影响,为IVD企业选择表达平台提供依据。
---
以上文献摘要涵盖重组蛋白在传染病、癌症检测、表达系统优化及新技术应用等方向,反映了IVD领域的关键研究热点。
**Background of Recombinant Proteins in IVD**
Recombinant proteins, engineered through genetic modification, play a pivotal role in modern *in vitro diagnostics* (IVD). These proteins are produced by inserting target DNA into host systems (e.g., bacteria, yeast, or mammalian cells), enabling scalable and consistent synthesis of specific proteins. Their application in IVD spans immunoassays, biosensors, and molecular diagnostics, where they serve as critical components like antigens, antibodies, enzymes, or calibrators.
The demand for recombinant proteins surged with advancements in precision medicine and personalized diagnostics. Traditional methods relying on animal-derived proteins faced challenges, including batch variability, ethical concerns, and risk of contamination. Recombinant technology addressed these issues by offering high purity, reproducibility, and customization. For example, recombinant antigens improve specificity in infectious disease tests (e.g., HIV, hepatitis), while engineered antibodies enhance sensitivity in cancer biomarker detection.
The COVID-19 pandemic further highlighted their importance. Rapid development of recombinant spike proteins accelerated SARS-CoV-2 antibody test kits and vaccine research. Additionally, innovations like fusion proteins or tagged variants streamline assay development, enabling multiplex testing and point-of-care solutions.
Despite progress, challenges persist. Complex proteins requiring post-translational modifications (e.g., glycosylation) often necessitate costly mammalian expression systems. Stability during storage and transport also remains a concern. Ongoing research focuses on optimizing expression platforms, improving yield, and enhancing thermal resilience.
Regulatory bodies emphasize stringent quality controls, aligning recombinant protein production with ISO 13485 and GMP standards to ensure diagnostic reliability. As IVD evolves toward automation and AI integration, recombinant proteins will remain foundational, driving innovations in accuracy, accessibility, and global health outcomes.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×