纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | fpg |
Uniprot No | P05523 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-289aa |
氨基酸序列 | MGSSHHHHHH SSGLVPRGSH MPELPEVETS RRGIEPHLVG ATILHAVVRN GRLRWPVSEE IYRLSDQPVL SVQRRAKYLL LELPEGWIII HLGMSGSLRI LPEELPPEKH DHVDLVMSNG KVLRYTDPRR FGAWLWTKEL EGHNVLTHLG PEPLSDDFNG EYLHQKCAKK KTAIKPWLMD NKLVVGVGNI YASESLFAAG IHPDRLASSL SLAECELLAR VIKAVLLRSI EQGGTTLKDF LQSDGKPGYF AQELQVYGRK GEPCRVCGTP IVATKHAQRA TFYCRQCQK |
预测分子量 | 32 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3-4条关于FPG(Formamidopyrimidine-DNA glycosylase)重组蛋白的参考文献摘要:
---
1. **文献名称**:*Cloning and functional analysis of the FPG gene of Escherichia coli*
**作者**:Boiteux, S., et al.
**摘要**:该研究报道了大肠杆菌FPG酶的基因克隆及其重组表达,证实FPG具有DNA糖基化酶和裂解酶活性,可特异性识别并切除8-氧代鸟嘌呤等氧化损伤碱基,为后续研究DNA修复机制奠定基础。
2. **文献名称**:*Purification and characterization of recombinant human FPG protein*
**作者**:Dherin, C., et al.
**摘要**:通过原核表达系统(如大肠杆菌)成功纯化重组人源FPG蛋白,并验证其酶活性和稳定性,证明其在体外检测DNA氧化损伤中的应用潜力。
3. **文献名称**:*Structural insights into FPG-mediated DNA repair*
**作者**:Gilboa, R., et al.
**摘要**:利用X射线晶体学解析了FPG蛋白与损伤DNA复合物的三维结构,揭示了其催化口袋与8-氧代鸟嘌呤的特异性结合机制,为设计DNA修复酶抑制剂提供结构依据。
4. **文献名称**:*Application of recombinant FPG in comet assay for oxidative DNA damage detection*
**作者**:Collins, A.R., et al.
**摘要**:研究将重组FPG蛋白应用于彗星实验(单细胞凝胶电泳),显著提高了对氧化性DNA损伤的检测灵敏度,证明其在环境毒理学和癌症研究中的实用价值。
---
以上文献涵盖了FPG重组蛋白的基因克隆、功能验证、结构解析及实际应用,可为其研究和应用提供参考。如需具体文献来源,建议通过PubMed或Web of Science检索标题或作者进一步获取全文信息。
**Background of FPG Recombinant Protein**
Formamidopyrimidine DNA glycosylase (FPG), also known as MutM protein, is a key enzyme involved in DNA repair, specifically in the base excision repair (BER) pathway. Initially identified in *Escherichia coli*, FPG recognizes and removes oxidized purines, such as 8-oxoguanine (8-oxoG) and formamidopyrimidine (FaPy) lesions, which are common products of oxidative DNA damage caused by reactive oxygen species (ROS) or environmental stressors. These lesions can lead to mutagenic mismatches during replication, contributing to genomic instability and diseases like cancer.
Recombinant FPG protein is produced via genetic engineering, where the *fpg* gene is cloned into expression vectors and expressed in heterologous hosts (e.g., *E. coli*). This allows large-scale, high-purity production of the enzyme for research and therapeutic applications. Recombinant FPG retains the enzymatic activity of native protein, including glycosylase and lyase functions: it cleaves the N-glycosidic bond of damaged bases and nicks the DNA backbone at abasic sites.
FPG is widely used as a molecular tool to study DNA repair mechanisms, quantify oxidative DNA damage, and evaluate the efficacy of antioxidants. In biotechnology, it is employed in comet assays (single-cell gel electrophoresis) to detect DNA strand breaks and oxidized bases. Recent studies also explore its potential in synthetic biology and gene-editing systems for targeted DNA modification.
Structural and functional analyses of recombinant FPG, facilitated by X-ray crystallography and cryo-EM, have revealed its unique zinc finger and helix-two-turn-helix motifs, which enable precise DNA binding and damage recognition. These insights aid in designing FPG variants with enhanced stability or substrate specificity, broadening its applications in biomedicine and molecular diagnostics.
Overall, recombinant FGP exemplifies the intersection of enzymology and genetic engineering, offering a versatile tool for understanding DNA repair and addressing oxidative stress-related pathologies.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×