纯度 | >90%SDS-PAGE. |
种属 | Human |
靶点 | PARP1 |
Uniprot No | P09874 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-1041aa |
氨基酸序列 | MAESSDKLYRVEYAKSGRASCKKCSESIPKDSLRMAIMVQSPMFDGKVPH WYHFSCFWKVGHSIRHPDVEVDGFSELRWDDQQKVKKTAEAGGVTGKGQD GIGSKAEKTLGDFAAEYAKSNRSTCKGCMEKIEKGQVRLSKKMVDPEKPQ LGMIDRWYHPGCFVKNREELGFRPEYSASQLKGFSLLATEDKEALKKQLP GVKSEGKRKGDEVDGVDEVAKKKSKKEKDKDSKLEKALKAQNDLIWNIKD ELKKVCSTNDLKELLIFNKQQVPSGESAILDRVADGMVFGALLPCEECSG QLVFKSDAYYCTGDVTAWTKCMVKTQTPNRKEWVTPKEFREISYLKKLKV KKQDRIFPPETSASVAATPPPSTASAPAAVNSSASADKPLSNMKILTLGK LSRNKDEVKAMIEKLGGKLTGTANKASLCISTKKEVEKMNKKMEEVKEAN IRVVSEDFLQDVSASTKSLQELFLAHILSPWGAEVKAEPVEVVAPRGKSG AALSKKSKGQVKEEGINKSEKRMKLTLKGGAAVDPDSGLEHSAHVLEKGG KVFSATLGLVDIVKGTNSYYKLQLLEDDKENRYWIFRSWGRVGTVIGSNK LEQMPSKEDAIEHFMKLYEEKTGNAWHSKNFTKYPKKFYPLEIDYGQDEE AVKKLTVNPGTKSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGK LSKRQIQAAYSILSEVQQAVSQGSSDSQILDLSNRFYTLIPHDFGMKKPP LLNNADSVQAKVEMLDNLLDIEVAYSLLRGGSDDSSKDPIDVNYEKLKTD IKVVDRDSEEAEIIRKYVKNTHATTHNAYDLEVIDIFKIEREGECQRYKP FKQLHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADM VSKSANYCHTSQGDPIGLILLGEVALGNMYELKHASHISKLPKGKHSVKG LGKTTPDPSANISLDGVDVPLGTGISSGVNDTSLLYNEYIVYDIAQVNLK YLLKLKFNFKTSLW |
预测分子量 | 113 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是3条关于PARP1重组蛋白的文献摘要概括(注:文献为虚拟示例,仅作格式参考):
1. **《Recombinant PARP1 overexpression enhances DNA repair capacity in vitro》**
*作者:Smith A, et al.*
摘要:研究通过在大肠杆菌中表达重组人PARP1蛋白,验证其体外催化NAD+依赖性多聚ADP核糖化活性,并证实其与DNA损伤位点的结合能力,为开发PARP抑制剂提供模型。
2. **《Structural analysis of recombinant PARP1 BRCT domain interactions》**
*作者:Chen L, et al.*
摘要:利用重组表达的PARP1 BRCT结构域蛋白,结合X射线晶体学揭示其与损伤DNA及修复蛋白XRCC1的结合机制,阐明其在DNA单链断裂修复中的分子基础。
3. **《Recombinant PARP1-based screening platform identifies novel allosteric inhibitors》**
*作者:Kimura T, et al.*
摘要:构建基于重组PARP1蛋白的高通量筛选系统,发现一类新型变构抑制剂,可特异性阻断PARP1的酶活性而不影响其DNA结合功能,为癌症治疗提供新策略。
PARP1 (Poly(ADP-ribose) polymerase 1) is a nuclear enzyme critical for DNA repair, genomic stability, and cellular stress responses. It belongs to the PARP family, which catalyzes poly(ADP-ribosyl)ation (PARylation) of target proteins using NAD+ as a substrate. PARP1 detects single-strand DNA breaks (SSBs) via its N-terminal DNA-binding domain, triggering its catalytic activity to recruit repair machinery through PAR chains. This process is essential for base excision repair (BER), a key pathway for maintaining genome integrity. Beyond repair, PARP1 regulates transcription, chromatin remodeling, and apoptosis, linking it to cancer, neurodegeneration, and inflammation.
Recombinant PARP1 proteins are engineered versions produced in heterologous systems (e.g., E. coli, insect cells) using molecular cloning. These proteins retain functional domains: zinc-finger motifs for DNA binding, a BRCT domain for protein interactions, and a C-terminal catalytic domain. Recombinant PARP1 is widely used in drug discovery, particularly for screening PARP inhibitors (PARPi) like olaparib and talazoparib, which exploit synthetic lethality in BRCA-deficient cancers. Its role in DNA repair also makes it a tool for studying resistance mechanisms in chemotherapy or radiation therapy.
In research, recombinant PARP1 enables biochemical assays (e.g., PARylation kinetics), structural studies (crystallography, cryo-EM), and high-throughput screening. Modifications, such as fluorescent tags or truncations, enhance experimental flexibility. However, batch consistency, post-translational modifications, and proper folding remain challenges in production. Despite this, recombinant PARP1 remains indispensable for understanding DNA repair pathways and developing targeted therapies, reflecting its dual significance in basic science and translational medicine.
×