首页 / 产品 / 蛋白 / 跨膜蛋白

Recombinant Human PTS protein

  • 中文名: 6-吡咯基四氢蝶呤合酶(PTS)重组蛋白
  • 别    名: PTS;6-pyruvoyl tetrahydrobiopterin synthase
货号: PA1000-2590
Price: ¥询价
数量:
大包装询价

产品详情

纯度>90%SDS-PAGE.
种属Human
靶点PTS
Uniprot NoQ03393
内毒素< 0.01EU/μg
表达宿主E.coli
表达区间1-145aa
氨基酸序列MSTEGGGRRCQAQVSRRISFSASHRLYSKFLSDEENLKLFGKCNNPNGHGHNYKVVVTVHGEIDPATGMVMNLADLKKYMEEAIMQPLDHKNLDMDVPYFADVVSTTENVAVYIWDNLQKVLPVGVLYKVKVYETDNNIVVYKGE
预测分子量kDa
蛋白标签His tag N-Terminus
缓冲液PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300.
稳定性 & 储存条件Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt.
Reconstituted protein solution can be stored at 2-8°C for 2-7 days.
Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months.
复溶Always centrifuge tubes before opening.Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.

参考文献

以下是关于PTS(磷酸转移酶系统)重组蛋白的3篇示例参考文献(注:以下为模拟虚构文献,供参考格式,请通过学术数据库查找真实文献):

---

1. **文献名称**: "Enhancement of Recombinant Protein Solubility Using a Modified Phosphotransferase System in E. coli"

**作者**: Zhang, L., et al.

**摘要**: 本研究通过在大肠杆菌表达系统中引入改造的PTS组分,显著提高了重组蛋白的可溶性和表达效率。实验表明,PTS相关调控元件能优化胞内代谢流,减少包涵体形成,为重组蛋白生产提供了新策略。

---

2. **文献名称**: "Targeted Delivery of Therapeutic Proteins via PTS-based Fusion Tags"

**作者**: Kim, S., & Patel, R.

**摘要**: 提出了一种基于PTS信号肽的新型重组蛋白靶向递送系统。通过将PTS功能域与治疗性蛋白融合,实现了对特定细胞类型的高效跨膜转运,并在体外实验中验证了其增强的细胞内递送效率。

---

3. **文献名称**: "Engineering the Phosphotransferase System for Improved Stability of Recombinant Enzymes"

**作者**: Müller, J., et al.

**摘要**: 通过理性设计PTS相关磷酸化位点,改造了重组酶的稳定性。研究证明,修饰后的蛋白在高温和极端pH条件下活性保留率提升40%,为工业酶应用提供了优化方案。

---

建议通过PubMed、Google Scholar等平台检索真实文献,关键词如:

"PTS recombinant protein expression" / "Phosphotransferase system protein engineering"。

背景信息

PTS (Protein Therapeutic Synthesis) recombinant proteins represent a cornerstone of modern biotechnology, with roots tracing back to the 1970s recombinant DNA breakthroughs. The ability to splice genes encoding therapeutic proteins into bacterial, yeast, or mammalian host systems revolutionized medicine, enabling mass production of proteins that were previously scarce or inaccessible from natural sources.

The technology gained momentum in 1982 with FDA approval of recombinant human insulin, the first commercially available therapeutic protein. This milestone validated microbial systems (notably E. coli) for producing disulfide bond-free proteins. For complex molecules requiring post-translational modifications (e.g., monoclonal antibodies, clotting factors), mammalian cell cultures (CHO, HEK293) became dominant since the 1990s, despite higher costs.

Key innovations driving PTS development include codon optimization for expression enhancement, affinity tag systems for purification (e.g., His-tag, GST fusion), and transient gene expression platforms accelerating R&D cycles. The 2000s saw biosimilars emerge as patent cliffs loomed, while newer modalities like Fc-fusion proteins and PEGylated variants extended therapeutic half-lives.

Current applications span oncology (PD-1/PD-L1 inhibitors), autoimmune diseases (TNF-α blockers), and rare genetic disorders (enzyme replacement therapies). As of 2023. recombinant proteins constitute over 30% of biologics in clinical trials, with global market projections exceeding $300 billion by 2030. Challenges persist in addressing immunogenicity, improving production yields, and developing cost-effective continuous manufacturing processes. Emerging frontiers include AI-driven protein design and plant-based expression systems for scalable production.

客户数据及评论

折叠内容

大包装询价

×