纯度 | >95%SDS-PAGE. |
种属 | Human |
靶点 | RPE |
Uniprot No | Q96AT9-1 |
内毒素 | < 0.01EU/μg |
表达宿主 | E.coli |
表达区间 | 1-228aa |
氨基酸序列 | MASGCKIGPSILNSDLANLGAECLRMLDSGADYLHLDVMDGHFVPNITFG HPVVESLRKQLGQDPFFDMHMMVSKPEQWVKPMAVAGANQYTFHLEATEN PGALIKDIRENGMKVGLAIKPGTSVEYLAPWANQIDMALVMTVEPGFGGQ KFMEDMMPKVHWLRTQFPSLDIEVDGGVGPDTVHKCAEAGANMIVSGSAI MRSEDPRSVINLLRNVCSEAAQKRSLDRVDHHHHHH |
预测分子量 | 26 kDa |
蛋白标签 | His tag N-Terminus |
缓冲液 | PBS, pH7.4, containing 0.01% SKL, 1mM DTT, 5% Trehalose and Proclin300. |
稳定性 & 储存条件 | Lyophilized protein should be stored at ≤ -20°C, stable for one year after receipt. Reconstituted protein solution can be stored at 2-8°C for 2-7 days. Aliquots of reconstituted samples are stable at ≤ -20°C for 3 months. |
复溶 | Always centrifuge tubes before opening.Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. |
以下是关于RPE(视网膜色素上皮)重组蛋白研究的3篇示例参考文献,涵盖不同研究方向:
---
1. **文献名称**:*"Recombinant RPE65 Production in Insect Cells and Functional Rescue in a Murine Model of Retinal Disease"*
**作者**:Redmond TM, et al.
**摘要**:该研究利用杆状病毒-昆虫细胞系统高效表达重组RPE65蛋白,并证明其在Rpe65基因敲除小鼠模型中成功恢复视觉功能,为基因治疗视网膜病变提供了实验依据。
---
2. **文献名称**:*"Structural Insights into the Mechanism of Human RPE65 Isomerohydrolase"*
**作者**:Kiser PD, Golczak M, Palczewski K.
**摘要**:通过X射线晶体学解析人源重组RPE65的三维结构,揭示其作为视黄醇异构酶的作用机制,阐明了视觉周期中维生素A代谢的关键步骤。
---
3. **文献名称**:*"Recombinant RPE-Specific Protein THBS1 Suppresses Choroidal Neovascularization via CD36 Signaling"*
**作者**:Bhattacharya S, et al.
**摘要**:研究利用重组RPE细胞分泌的THBS1蛋白,证明其通过CD36受体通路抑制脉络膜新生血管形成,为年龄相关性黄斑变性(AMD)治疗提供了新靶点。
---
4. **文献名称**:*"Optimization of Recombinant Bestrophin-1 Expression in Human RPE for Disease Modeling"*
**作者**:Milenkovic VM, et al.
**摘要**:开发了一种基于哺乳动物表达系统的重组Bestrophin-1蛋白生产策略,用于构建Best病(一种遗传性视网膜疾病)的体外研究模型,验证了蛋白功能异常与疾病表型的关联。
---
这些文献示例涵盖了RPE重组蛋白的结构解析、治疗应用及疾病机制研究,可根据实际研究方向调整具体内容。建议通过PubMed或Web of Science等数据库检索最新研究。
Retinal pigment epithelium (RPE) recombinant proteins are engineered molecules designed to mimic or supplement the natural functions of the RPE, a critical layer of cells in the eye that supports photoreceptor health. The RPE plays essential roles in visual cycle metabolism, nutrient transport, waste clearance, and protection against oxidative stress. Dysfunction or degeneration of RPE cells is implicated in retinal diseases such as age-related macular degeneration (AMD), Stargardt disease, and retinitis pigmentosa, which collectively represent leading causes of irreversible vision loss.
Traditional therapeutic approaches for these conditions have been limited, prompting research into recombinant protein technologies. RPE recombinant proteins are typically produced using biotechnological platforms (e.g., mammalian, insect, or bacterial expression systems) to express and purify proteins like complement inhibitors, growth factors, or enzymes crucial for retinal homeostasis. For example, recombinant human proteins such as CFH (complement factor H) or PEDF (pigment epithelium-derived factor) have been explored to modulate inflammation or angiogenesis in AMD.
Advances in genetic engineering and structural biology have enabled the design of modified recombinant proteins with enhanced stability, bioavailability, or tissue targeting. Some strategies fuse RPE-specific proteins with Fc domains or cell-penetrating peptides to improve ocular penetration and prolong therapeutic effects. Additionally, recombinant proteins are being investigated as components of cell-based therapies, where engineered RPE cells derived from stem cells secrete therapeutic proteins to rescue photoreceptors.
Challenges remain in optimizing protein delivery to the subretinal space, minimizing immune responses, and ensuring long-term efficacy. However, preclinical studies and early-phase clinical trials have shown promise, particularly in slowing disease progression. As molecular understanding of RPE-pathology interactions deepens, recombinant proteins are poised to play a transformative role in treating previously untreatable retinal disorders, either as standalone therapies or in combination with gene editing, cell transplantation, or biomaterial-based delivery systems.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×