INPP4A (inositol polyphosphate-4-phosphatase type I) is a phosphatase enzyme encoded by the *INPP4A* gene, primarily involved in regulating phosphoinositide signaling pathways. It catalyzes the hydrolysis of the 4-phosphate group from phosphatidylinositol 3.4-bisphosphate [PI(3.4)P2] and phosphatidylinositol 4.5-bisphosphate [PI(4.5)P2], key lipid secondary messengers that modulate cellular processes such as proliferation, survival, and apoptosis. Structurally, INPP4A contains a conserved phosphatase domain and a C-terminal catalytic domain, enabling its substrate specificity and enzymatic activity.
Recombinant INPP4A protein is engineered in vitro using expression systems like mammalian, insect, or bacterial cells to produce a purified, functional form of the enzyme for research applications. Its production often involves tagging (e.g., His-tag) to facilitate purification and detection. Studies highlight INPP4A's dual roles in disease: as a tumor suppressor in cancers (e.g., breast, prostate) by antagonizing PI3K/AKT/mTOR signaling, and paradoxically, as a promoter of metastasis in certain contexts. It also links to neurodegenerative disorders (e.g., Alzheimer’s disease) through interactions with amyloid-beta and tau proteins, and metabolic syndromes via insulin signaling regulation.
Researchers utilize recombinant INPP4A to dissect its enzymatic mechanisms, substrate interactions, and structural features. It serves as a tool for drug screening, pathway analysis, and functional studies in cellular models. However, challenges remain in understanding its tissue-specific roles and post-translational modifications. Overall, recombinant INPP4A provides a critical resource for advancing insights into phosphoinositide metabolism and therapeutic targeting in diverse diseases.
以下是3篇关于重组蛋白的经典文献及其核心内容概括:
1. **《Recombinant protein expression in Escherichia coli: advances and challenges》**
- 作者:Rosano, G.L. & Ceccarelli, E.A.
- 摘要:系统综述了大肠杆菌作为重组蛋白表达宿主的优势(如成本低、操作简便)及局限性(如缺乏真核翻译后修饰),并总结了近年来在表达载体设计、密码子优化和包涵体复性技术上的改进策略。
2. **《Mammalian cell culture for production of recombinant proteins: A review of the critical steps》**
- 作者:Zhu, J.
- 摘要:探讨哺乳动物细胞(如CHO细胞)在重组蛋白生产中的应用,重点分析糖基化修饰对药物活性的影响,以及通过培养基优化和代谢工程提高蛋白产量和质量的关键技术。
3. **《Recombinant protein therapeutics from CHO cells: 20 years and counting》**
- 作者:Walsh, G.
- 摘要:回顾中国仓鼠卵巢(CHO)细胞在生物制药中的主导地位,总结其生产单克隆抗体、凝血因子等复杂蛋白的成功案例,并讨论未来在基因编辑和连续生产工艺中的发展方向。
4. **《Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems》**
- 作者:Terpe, K.
- 摘要:对比His标签、GST标签等融合标签在重组蛋白纯化中的应用,分析不同标签对蛋白溶解度、纯化效率和功能活性的影响,为实验设计提供选择依据。
以上文献覆盖重组蛋白生产系统、应用场景及纯化技术等核心领域。
Recombinant proteins, engineered through genetic modification techniques, represent a cornerstone of modern biotechnology. The concept emerged in the 1970s with the development of recombinant DNA technology, enabling scientists to transfer genes encoding specific proteins into host organisms. This breakthrough addressed critical limitations in obtaining therapeutic proteins from natural sources, which were often scarce, expensive, or contaminated with pathogens.
The production process involves isolating a target gene, inserting it into expression vectors (typically plasmids), and introducing these into host cells like bacteria (E. coli), yeast (Pichia pastoris), or mammalian cells (CHO cells). These modified organisms then synthesize the desired protein through their cellular machinery. Insulin became the first commercially available recombinant protein in 1982. revolutionizing diabetes treatment by replacing animal-derived insulin.
Advancements in expression systems, purification technologies (e.g., affinity chromatography), and protein engineering (including fusion tags and glycoengineering) have dramatically expanded applications. Today, recombinant proteins are vital in therapeutics (monoclonal antibodies like adalimumab, vaccines like HPV vaccine), research tools (enzymes for PCR), industrial processes (detergent proteases), and diagnostics (COVID-19 antigen tests).
Current research focuses on improving production yields, enhancing protein stability, and developing novel expression platforms including plant systems and cell-free synthesis. Challenges remain in producing complex proteins requiring post-translational modifications, driving the adoption of CRISPR-edited cell lines and AI-assisted protein design. The global recombinant protein market continues to grow, fueled by increasing demand for biologics and personalized medicine approaches.
在生物科技领域,蛋白研发与生产是前沿探索的关键支撑。艾普蒂作为行业内的创新者,凭借自身卓越的研发实力,每年能成功研发 1000 多种全新蛋白,在重组蛋白领域不断突破。 在重组蛋白生产过程中,艾普蒂积累了丰富且成熟的经验。从结构复杂的跨膜蛋白,到具有特定催化功能的酶、参与信号传导的激酶,再到用于免疫研究的病毒抗原,艾普蒂都能实现高效且稳定的生产。 这一成就离不开艾普蒂强大的技术平台。我们构建了多元化的重组蛋白表达系统,昆虫细胞、哺乳动物细胞以及原核蛋白表达系统协同运作。不同的表达系统各有优势,能够满足不同客户对重组蛋白的活性、产量、成本等多样化的需求,从而提供高品质、低成本的活性重组蛋白。 艾普蒂提供的不只是产品,更是从源头到终端的一站式解决方案。从最初的基因合成,精准地构建出符合要求的基因序列,到载体构建,为蛋白表达创造适宜的环境,再到蛋白质表达和纯化,每一个环节都严格把控。我们充分尊重客户的个性化需求,在表达 / 纯化标签的选择、表达宿主的确定等方面,为客户量身定制专属方案。 同时,艾普蒂还配备了多种纯化体系,能够应对不同特性蛋白的纯化需求。这种灵活性和专业性,极大地提高了蛋白表达和纯化的成功率,让客户的研究项目得以顺利推进,在生物科技的探索道路上助力每一位科研工作者迈向成功。
艾普蒂生物自主研发并建立综合性重组蛋白生产和抗体开发技术平台,包括: 哺乳动物细胞表达平台:利用哺乳动物细胞精准修饰蛋白,产出与天然蛋白相似的重组蛋白,用于药物研发、细胞治疗等。 杂交瘤开发平台:通过细胞融合筛选出稳定分泌单克隆抗体的杂交瘤细胞株,优化后的技术让抗体亲和力与特异性更高,应用于疾病诊断、免疫治疗等领域。 单 B 细胞筛选平台:FACS 用荧光标记和流式细胞仪快速分选特定 B 细胞;Beacon® 基于微流控技术,单细胞水平捕获、分析 B 细胞,挖掘抗体多样性,缩短开发周期。 凭借这些平台,艾普蒂生物为客户提供优质试剂和专业 CRO 技术服务,推动生物科技发展。
艾普蒂生物在重组蛋白和天然蛋白开发领域经验十分丰富,拥有超过 2 万种重组蛋白的开发案例。在四大重组蛋白表达平台的运用上,艾普蒂生物不仅经验老到,还积累了详实的成功案例。针对客户的工业化生产需求,我们能够定制并优化实验方案。通过小试探索、工艺放大以及条件优化等环节,对重组蛋白基因序列进行优化,全面探索多种条件,精准找出最契合客户需求的生产方法。 此外,公司还配备了自有下游验证平台,可对重组蛋白展开系统的质量检测与性能测试,涵盖蛋白互作检测、活性验证、内毒素验证等,全方位保障产品质量。 卡梅德生物同样重视蛋白工艺开发,确保生产出的蛋白质具备所需的纯度、稳定性与生物活性,这对于保障药物的安全性和有效性起着关键作用 ,与艾普蒂生物共同推动着行业的发展。
×